Как считать цилиндры двигателя?

Работа тактов двигателя

Чтобы обеспечить равномерную нагрузку на коленчатый вал, каждый поршень имеет определенный момент движения. Такая последовательность обозначается как порядок работы цилиндров двигателя. На разных вариантах силовых агрегатов установлен свой порядок, который зависит от того сколько цилиндров и их тактичности.

Для обеспечения наилучшей производительности гильзы с последовательной работой расположены на расстоянии друг от друга. Количество цилиндров в ДВС влияет ни их расположение.

Тактичность

Передвижение поршня внутри цилиндров двигателя называется рабочим циклом. Цикл состоит из фаз газораспределения, которыми можно определить момент открытия и закрытия клапанов. В четырехтактном транспорте полный цикл проходит после поворота коленчатого вала на 720 градусов, двухтактного — за 360.

Чтобы обеспечить валу постоянное усилие во время рабочего хода в цилиндрах двигателя, колена агрегата расположены под определенным углом относительно друг друга. На величину угла влияет количество цилиндров, типа установки и расположение цилиндров.

Как определить порядок работы цилиндров ДВС в зависимости от тактов.

Тактичность двигателя

Работа цилиндров двигателя заключается в следующих этапах:

  1. Впуск — поршень передвигается в нижнюю мертвую точку, при этом через впускной клапан происходит заполнение камеры сгорания топливовоздушной смесью. Выпускной клапан закрыт.
  2. Сжатие — оба клапана закрыты, поршень передвигается в верхнюю мертвую точку, сжимая топливный состав. От сжатия температура в камере значительно возрастает, также увеличивается давление в цилиндре двигателя. Важный параметр, влияющий на экономичность машины — это степень сжатия. Показатель означает соотношение полного наполнения гильз и объем камеры горения. Для автомобилей с большим октановым числом требуется заливать высокооктановое топливо.
  3. Рабочий ход — клапана в закрытом положении, происходит воспламенение смеси от свечи. Под действием давление в цилиндре автомотора при сгорании топлива поршень идет в низ, вращая коленвал. Для эффективной производительности необходимо чтобы горючее полностью сгорела до прихода поршня в НМТ. Это обеспечивается установкой угла опережения зажигания. В современных авто регулировка осуществляется встроенным электронным блоком. Старые модели оборудованы механическим регулятором.
  4. Выпуск — рабочий ход заканчивается выхлопом отработанных газов из цилиндров двигателя. На этом этапе происходит важный процесс — продувка цилиндров автомотора. Продувка цилиндров двигателя обеспечивается одновременным открытием впускного и выпускного клапанов. После перехода поршня в ВМТ начинается такт впуска.

Принцип работы дизельного мотора

Рабочий цикл дизеля отличается от атмосферного по способу смесеобразования и воспламенения. Вместо готовой смеси в камеру сгорания подается воздух. За счет сжатия температура в ЦПГ дизельного двигателя увеличивается. Затем происходит подача топлива через форсунки.

Из-за высокой температуры и давление в цилиндрах дизельного агрегата дизтопливо самовоспламеняется — происходит рабочий ход. Рабочий ход заканчивается выхлопом отработанных газов.

Начало нумерация

Единого стандарта для определения нумерация цилиндров не существует. Поэтому как считаются цилиндры в двигателе нужно смотреть в технической инструкции к транспортному средству.

На нумерацию цилиндров в двигателе влияют следующие факторы:

  • тип ходовой машины: с задним или передним приводом;
  • расположение цилиндров в двигателе: рядное, V- образное, оппозитное;
  • направление вращения коленчатого вала;
  • количество цилиндров в двигателе.

Для тех, кто задумал провести обслуживание необходимо знать, как проверить цилиндры двигателя. Где первый цилиндр двигателя можно определить по нескольким факторам:

  • Как считать цилиндры двигателя в зависимости от типа привода: для марок с передними ведущими колесами первый цилиндр считаться со стороны пассажирского места.
  • На задне-приводных моделях порядок работы цилиндров двигателя начинается со стороны радиатора.

Сколько цилиндров в двигателе, метод установки зависит от завода изготовителя. Некоторые производители используют вариант обратной нумерации, при котором счет начинается со стороны салона. В автопроизводителей французских марок подсчет начинается от коробки передач или в зависимости от стороны крутящего момента.

Ремонт узлов автомобиля

Устройство блока цилиндров состоит из деталей, которые функционируют в агрессивных условиях, поэтому часто подвергаются поломке и износу.

Восстановление блока цилиндров двигателя состоит из таких операций:

Как нумеруются цилиндры, виды их расположения в двигателе

С момента изобретения первого ДВС перед инженерами стояла очень ответственная цель –снять максимум мощности с конкретного объема силового агрегата. Стараясь решить эту задачу, конструкторы проводили эксперименты с числом и компоновкой камер сгорания.

В разное время в серийных моделях авто использовались, как маленькие одноцилиндровые ДВС, так и огромные агрегаты с 16-ю цилиндрами. На разных моделях камеры сгорания расположены и нумеруются по-разному и начинающему автолюбителю эта информация будет очень полезна.

Как располагаются цилиндры в двигателях

Существуют разные модели двигателей – это и старинные одно- и двухцилиндровые ДВС, традиционные рядные четырех- и шестицилиндровые модели.

Более крупные агрегаты имели V-образные блоки – такие агрегаты могли иметь восемь и более камер сгорания.

Рядное расположение

При рядном расположении в блоке цилиндры располагаются в один ряд. В такой конфигурации существуют двух, трех, четырех, пяти и даже шестицилиндровые моторы.

Двух- и трехцилиндровые ДВС сейчас устанавливаются на современных авто не так часто, хотя популярность их медленно набирает обороты.

Этому способствовали умные системы приготовления топливной смеси и турбины – например, турбированная версия двухцилиндрового ДВС хетчбека Fiat 500. Трехцилиндровый рядный двигатель можно встретить на «Деу Матиз» и многих других.

Что касается рядной «четверки», то такие блоки устанавливаются в большинстве двигателей для легковых авто – объемы таких движков начинаются от 1 л., а самый объемный рядный ДВС – 2,4 л. и более.

Пятицилиндровые двигатели с рядным расположением на автомобилях, производимых серийно, стали появляться в 70-х годах. В числе первых можно выделить дизельные модели Mercedes – они устанавливались в 1974 году на модели в кузове W123.

А уже в 1976 году построили пятицилиндровый мотор от Audi. Начиная с конца 80-х годов рядная пятерка уже никого не удивляла и успешно устанавливалась на самые разные автомобили Fiat, Volvo и других автобрендов.

Рядная «шестерка», которая в 80-х и 90-х была очень популярна в Европе, нынче превратилась в вымирающий вид.

Про восьмицилиндровые модели и говорить не стоит – с такой компоновкой давно попрощались еще в 30-е годы.

Почему? С увеличением объемов блоки также увеличивались. Это создавало конструкторам и инженерам массу проблем при компоновке.

К примеру, втиснуть рядную восьмерку в переднеприводный автомобиль получилось только в двух случаях – это Austin Maxi 2200, который производился в 60-х, и Volvo S80.

В два ряда

Как сделать большой рядный ДВС короче и компактнее?

Двигатель можно “разрезать” пополам, установить две части рядом и заставить поршни вращать один коленчатый вал. Такие моторы имеют форму буквы “V».

Здесь камеры сгорания располагаются в два ряда под углом друг к другу. Такая конфигурация очень популярна у производителей и уступает только рядной «четверке».

Самые популярные модели – это те, где угол развала блока составляет 60 и 90 градусов. В такой конфигурации можно встретить шести- , восьми- , двенадцатицилиндровые моторы.

В первые такой силовой агрегат появился на Lancia Aurelia, это был 1950 год. За счет своих компактных размеров автомобиль быстро стал популярным среди автомобилистов.

Восемь камер сгорания в этой конфигурации располагаются по четыре в два ряда. Это самая компактная компоновка для крупнообъемных ДВС. Самый большой объем за всю историю автомобилестроения в такой V-компоновке составлял 13 литров. В случае с двенадцатью цилиндрами разница только в их количестве.

Со смещением

Конструкторы и инженеры искали компромиссное решение, чтобы создать мощный и в тоже время компактный силовой агрегат для легковых авто в среднем классе. Двигатель со смещением – это шестицилиндровый V-образный блок.

Цилиндры расположены друг напротив друга в шахматном порядке. Шесть цилиндров под углом в 15 градусов образуют достаточно узкий и короткий агрегат. Среди примеров можно привести VR6, которые устанавливались на «Golf» от Фольксваген.

Оппозитный тип

Как известно, на V-образном блоке угол развала двух частей составляет – 90 или 60 градусов. Если угол развала между двумя частями будет 180 градусов, то это оппозитный двигатель.

Здесь цилиндры располагаются друг напротив друга, горизонтально. Коленчатый вал в таких моделях общий, установлен в центре, а поршни двигаются от него.

Одним из первых таких конструкций стала отечественная разработка, которая использовалась при строительстве дирижабля «Россия». Кстати, несмотря на передовую конструкцию ДВС, дирижабль в небо не взлетел. Также можно вспомнить французские агрегаты от Gorbon-Brille.

А тот, кто разработал и запустил традиционный привычный каждому оппозитный мотор, это Фердинанд Порше. Первая партия автомобилей «Жук» комплектовалась именно этими ДВС в 1937 году.

Аналогичную конструкцию применили и на «Ford» А, С, F. В 1920 году баварский автомобильный концерт предложил свою конструкцию оппозитного мотора.

В данных силовых агрегатах соединены для ряда камер сгорания с VR-расположением. В каждом ряду цилиндры размещаются под углом 15 градусов.

Оба ряда находятся под углом в 72 градуса. В случае с восьмицилиндровым мотором, блок представляет собой два V-образных блока, которые находятся под углом в 72 градуса.

Нумерация цилиндров в разных типах ДВС

Что касается стандартов нумерации камер сгорания, то их нет. На то, как они пронумерованы в ДВС, влияют такие факторы:

  • Тип привода;
  • Тип ДВС, компоновка блока;
  • Поперечное либо продольное расположение агрегата под капотом;
  • Сторона вращения.

На стандартных переднеприводных авто с поперечно установленным двигателем нумерация начинается со стороны ГРМ. Так, возле ремня ГРМ находится первый цилиндр и дальше все остальные. Последний находится около КПП.

В многоцилиндровых V-образных двигателях первый цилиндр расположен в ряду с водительской стороны.

В двигателях американского производства камеры сгорания и их нумерация может отличаться и не поддаваться логике.

Так, для рядных четверок и шестерок первым может быть цилиндр около радиатора, в то время, как на всех прочих моделях нумерация начинается в сторону салона. Если нумерация обратная, то первым считается цилиндр ближайший к салону.

Французы очень оригинальны и применяют два способа нумерации камер сгорания ДВС.

  • На рядных четверках нумерация начинается от маховика.
  • Если это V-образная шестерка, тогда ближний к радиатору ряд – это первые три цилиндра, а ряд ближе к салону – последние три.

Как определить порядок работы цилиндров

Разные версии однотипных ДВС могут работать по разным схемам. К примеру, ЗМЗ-402 мотор работает следующим образом – 1-2-4-3. А вот ЗМЗ-406 имеет другой порядок – 1-3-4-2.

Шестицилиндровые моторы с рядным расположением работают по такой схеме – 1-5-3-6-2-4.

Порядок работы восьмицилиндрового двигателя будет следующим – 1-5-4-8-6-3-7-2.

Тема обширная, поэтому обязательно поделись своим опытом или мнением в комментария ниже.

Возможные варианты расчета объема двигателя

Расчет объема цилиндра двигателя

Как известно, объем двигателя автомобиля представляет собой сумму объемов всех его цилиндров. Однако формула, позволяющая рассчитать объем цилиндра, публикуется в различных вариантах, что порой сбивает с толку, особенно неопытных водителей. И все же, независимо от применяемого варианта, принцип расчета во всех случаях остается одним и тем же.

Сколько тепловоздушной смеси способен пропустить за один раз цилиндр двигателя? Сразу стоит отметить, что чем больше, тем выше будет крутящий момент, а также мощность мотора. Что значит «за один раз»? Четырехтактный мотор совершает полный цикл за 2 оборота коленчатого вала, то есть происходят впуск, сжатие, рабочий ход и выпуск. Так что 2 оборота или 4 такта считаются за один раз.

Расчет объема цилиндра

Объем одного цилиндра двигателя равняется произведению площади основания на высоту. Эта формула известна всем еще со школы.

Измеряется данная величина в кубических метрах или сантиметрах либо в литрах. 1000 см 3 равняется 1 литру. При указании объема мотора в литрах нужно проводить округление до одной цифры после запятой. К примеру, если объем двигателя составляет 1486 см 3 , то при переводе в литры его нужно обозначать как 1,5 литра; если объем равен 2526 см 3 , то его следует записать как 2,5 литра. Литраж цилиндров силовых агрегатов автомобилей отличается.

Понятие рабочего объема цилиндра

Рабочий объем цилиндра представляет собой объем между крайними позициями движения поршня. Он наполняется горючей тепловоздушной смесью во время ее впускания при движении поршня из верхней крайней позиции в нижнюю. Подходя к верхней мертвой позиции, поршень оставляет свободный объем – камеру сгорания, или сжатия. Чтобы рассчитать объем цилиндра полностью, нужно суммировать объем камер и рабочий объем.

Уровень сжатия – это величина, которая определяется как частное полного деления в одном цилиндре и объема камеры сгорания. Этот параметр определяет степень сжатия горючей смеси в цилиндре. От нее зависит мощность двигателя, ведь чем выше уровень сжатия, тем сильнее сгорающая смесь давит на поршень.

Повышение уровня сжатия – дело выгодное, поскольку в этом случае порция топлива может сделать больше полезной работы. Однако если уровень сжатия увеличить чрезмерно, рабочая смесь может самовоспламеняться или сгорать слишком быстро, а топливо детонирует. В результате быстрого сгорания рабочей смеси силовой агрегат работает неустойчиво.

Детонацию можно определить по резким постукиваниям, уменьшению мощности двигателя и густому черному дыму из выхлопной трубы. Проектировщики автомобилей постоянно ищут способы устранения детонации топлива при повышении степени сжатия. Уровень сжатия определяет необходимость использовать конкретный сорт топлива.

На увеличение мощности мотора влияет увеличение количества оборотов коленчатого вала за одну минуту. Но и здесь есть свои препятствия. Это нехватка времени для попадания горючей смеси внутрь цилиндра, сложность удаления отработанных газов, а также чрезмерное ускорение работы частей и механизмов, ведущее к их быстрому износу.

Для преодоления этих препятствий конструкторы увеличивают количество оборотов коленчатого вала. Для многоцилиндровых силовых агрегатов производят расчет объема цилиндра, после чего эти объемы суммируют, получая литраж мотора. Повышение мощности двигателя является следствием увеличения его литража. А параметр этот определяется классом транспортного средства.

Непостоянный рабочий объем

Обеспечение непостоянного рабочего объема цилиндра является насущной задачей. Для достижения такого эффекта применяется технология автоматической остановки части цилиндров при неполной нагрузке двигателя. Такая система уже используется в некоторых моделях пикапов и внедорожников, экономия топлива при этом составляет в среднем около 20%.

Есть и специальные двигатели, в которых применяется механическая трансформация рабочего хода поршня. Однако они пока еще находятся на стадии разработки. Стоит отметить, что двигатели внутреннего сгорания с непостоянным рабочим объемом цилиндров используются в качестве лабораторного оборудования, позволяя устанавливать «моторным способом» октановое число бензина.

Онлайн-калкулятор

Определение объема цилиндра онлайн калькулятором – метод, пользующийся популярностью у автомобилистов. Для расчета можно воспользоваться и обычным математическим калькулятором, который позволяет определить объем цилиндра по имеющимся параметрам.

Рассчитать объем цилиндра можно через:

  • радиус основания и высоту, при этом высота равняется ходу поршня;
  • площадь основания и высоту.

Но есть и более сложные калькуляторы, обладающие расширенным набором функций. Они позволяют рассчитывать не только объем мотора, но и степень сжатия. Для вычислений необходимы значения следующих параметров:

  • длину шатуна;
  • ход поршня;
  • недоход поршня;
  • диаметр цилиндра;
  • объем поршневой камеры;
  • толщину и диаметр прокладки;
  • объем камеры в ГБЦ;
  • количество цилиндров.

Перед тем, как посчитать объем цилиндра или всего двигателя либо вычислить уровень сжатия, следует уточнить и записать все вышеперечисленные параметры. У новичков с этим могут возникнуть сложности, поэтому придется проявить настойчивость.

Кривошипно-шатунный механизм

В одноцилиндровом четырехтактном двигателе на каждые два оборота коленчатого вала приходится четыре хода поршня, только один из которых — рабочий. Это приводит к неравномерной работе двигателя. Для небольших двигателей, таких? Как легкие лодочные моторы, двигатели мопедов, легких мотоциклов и т. д., такая неравномерность не представляет большой проблемы. Для более тяжелых автомобилей требуется большая мощность двигателя, а, следовательно, и больший рабочий объем цилиндра. В этом случае неравномерность работы двигателя становится более заметной. Вот почему на современных автомобилях применяются многоцилиндровые ДВС. Применение нескольких цилиндров, в которых рабочий ход происходит в разные моменты времени, дает возможность сгладить пульсации крутящего момента на вале двигателя. Большинство легковых автомобилей малого класса имеют четырехцилиндровые двигатели, хотя иногда используются двухцилиндровые и трехцилиндровые. На более тяжелых автомобилях, требующих большой мощности, наряду с четырехцилиндровыми, могут применяться пятицилиндровые и шестицилиндровые двигатели. Легковые автомобили высшего класса оборудуются восьмицилиндровыми и двенадцатицилиндровыми двигателями, хотя встречаются двигатели с десятью цилиндрами. Большинство грузовых автомобилей средней и большой грузоподъемности имеют двигатели с шестью и восемью цилиндрами.

  • Блок цилиндров
  • Головка блока цилиндров
  • Поршень
  • Шатун
  • Коленчатый вал

Неподвижные детали кривошипно-шатунного механизма

Кривошипно-шатунный механизм многоцилиндрового двигателя состоит из подвижных и неподвижных деталей.
К подвижным деталям КШМ относятся: поршень, поршневые кольца, поршневой палец, шатун, коленчатый вал, вкладыш подшипника и маховик. Неподвижными деталями КШМ являются: блок цилиндров, головка блока цилиндров и прокладка головки блока.
Кривошипно-шатунный механизм воспринимает давление газов, возникающих при сгорании топлива в цилиндрах двигателя, и преобразует это давление в механическую работу по вращению коленчатого вала.

Схемы расположения цилиндров в двигателях различной компоновки:
а — рядный четырехцилиндровый;
б — V-образный шестицилиндровый;
в — оппозитный четырехцилиндровый;
г — VR-двигатель шестицилиндровый;
д и е — W-образные 12-цилиндровые двигатели;
α — угол развала

Расположение цилиндров в блоке определяет компоновочную схему двигателя. Если оси цилиндров расположены в одной плоскости, то такие двигатели называют рядными.
Рядные двигатели устанавливаются на автомобиле или вертикально, или под углом к вертикальной плоскости для уменьшения высоты, занимаемой двигателем, а в некоторых случаях — горизонтально, например при размещении под полом автобуса. В V-образных двигателях оси цилиндров находятся в двух плоскостях, расположенных под углом друг к другу. Угол между осями цилиндров может быть различным. Разновидностью такого двигателя можно считать двигатель с так называемыми оппозитными (противолежащими) цилиндрами (в некоторых странах такую компоновку называют «boxer»), у которого этот угол составляет 180°. Сравнительно недавно появился двигатель W12, разработанный группой компаний Volkswagen, схема которого представляет собой как бы два V-образных двигателя с разными углами между осями цилиндров, имеющими общий коленчатый вал.

Двигатель W12, устанавливаемый на AudiA8 с 2001г., практически состоит из двух двигателей V6 с различными углами развала цилиндров, использующих общий коленчатый вал

Базовые понятия КШМ ДВС — это диаметр цилиндра и ход поршня. Диаметр цилиндра — это диаметр отверстия, под поршень, выполненного в блоке цилиндров .. Ход поршня — расстояние между ВМТ и НМТ. Диаметр цилиндра и ход поршня принято измерять в миллиметрах, а объем двигателя – в литрах. Понятно, что два двигателя одинакового объема могут иметь различное число цилиндров и различную компоновку.

Если диаметр цилиндра больше хода поршня, то такой двигатель называют короткоходным. Данные двигатели развивают более высокие максимальные обороты коленчатого вала, и в них упрощается размещение впускных и выпускных клапанов, что дает возможность получения высокой мощности. Если ход поршня превышает диаметр цилиндра, то двигатель считается длинноходным. Такие двигатели, как правило, более экономичны и характеризуются большими значениями крутящего момента. Длинноходные двигатели имеют большую высоту, но короче по длине.
При разработке конструкции двигателя приходится решать вопрос о выборе величины объема отдельного цилиндра. Если объем цилиндра сделать очень маленьким, то он будет плохо заполняться топливно-воздушной смесью, и мощность такого двигателя будет низкой. В то же время нельзя безгранично увеличивать объем цилиндра, потому что при этом фронт распространения пламени может не успеть дойти до стенок цилиндра за то короткое время, которое отводится на рабочий ход, а это приведет к уменьшению давления в цилиндре и скажется на уменьшении мощностных показателей двигателя.
В современных автомобильных двигателях объем отдельного цилиндра редко превышает 0,8л, а в большинстве двигателей составляет около 0,5л.
Чем большее число цилиндров имеет двигатель, тем равномернее он работает. Пульсации, возникающие при работе ДВС, могут быть уменьшены применением массивного маховика, устанавливаемого на конце коленчатого вала. Чем меньше цилиндров имеет двигатель, тем большей массой должен обладать маховик. В то же время массивный маховик из-за своей инерционности ухудшает способность двигателя быстро набирать обороты. Поэтому конструкторам двигателей приходится принимать компромиссные решения.

Цилиндр и поршень как основные элементы автомобильного двигателя

  1. Что такое цилиндр и поршень?
  2. Из чего изготавливают цилиндры и поршни?
  3. Охлаждение ЦПГ
  4. Система смазки цилиндров
  5. Неисправности при эксплуатации

Цилиндр и поршень являются одними из основных деталей любого двигателя внутреннего сгорания. Нижняя плоскость ГБЦ, днище поршня и стенка цилиндра образуют замкнутую полость, где происходит сгорание топливно-воздушной смеси. Поршень, который находится в цилиндре, преобразует энергию образовавшихся газов в поступательно движение, тем самым приводя в движение коленчатый вал.

Цилиндр и поршень прирабатываются в ходе эксплуатации автомобиля, обеспечивая эффективность и наилучшие режимы работы двигателя.

В данной статье мы подробно рассмотрим пару «цилиндр-поршень»: конструкцию, функции, условия их работы, а также проблемы, которые могут возникнуть при эксплуатации ЦПГ.

Что такое цилиндр и поршень?

Современные двигатели могут иметь от 2 до 16 цилиндров, которые объединены в блок цилиндров. От количества цилиндров зависит мощность ДВС.

Внутренняя часть цилиндра является его рабочей поверхностью и называется гильзой, а внешняя, которая составляет единое целое с корпусом блока – рубашкой. По каналам рубашки циркулирует охлаждающая жидкость.

Внутри цилиндра совершает возвратно-поступательное движение поршень. Он передает энергию давления газов на шатун коленвала, герметизирует камеру сгорания и отводит из нее тепло. Состоит поршень из днища (головки), уплотняющих колец и направляющей части (юбки).

Поршни для бензиновых двигателей имеют плоское днище. Они меньше нагреваются при работе и проще в изготовлении. Они могут обладать специальными канавками, которые способствуют полному открытию клапанов. В дизельных двигателях поршни имеют специальную выемку заданной формы на дне. Она служит для того, чтобы воздух, поступающий в цилиндр, лучше смешивался с топливом.

Плотность соединения поршня и цилиндра обеспечивают поршневые кольца. Их расположение и количество зависит от типа и назначения двигателя. Наиболее часто встречающееся исполнение – одно маслосъемное и два компрессионных кольца.

Компрессионные кольца предотвращают попадание газов в картер двигателя из камеры сгорания и отводят тепло к стенкам цилиндра от головки поршня. По форме они бывают коническими, бочкообразными и трапециевидными.

Верхнее компрессионное кольцо изнашивается быстрее других, поэтому его наружная поверхность подвергается напылению молибдена или пористому хромированию. Благодаря такой подготовке первое кольцо становится более износостойким и лучше удерживает моторное масло. Другие уплотняющие кольца покрываются слоем олова для улучшения приработки к цилиндрам.

Маслосъемное кольцо служит для удаления излишков масла со стенок цилиндра, тем самым предотвращая их попадание в камеру сгорания. Через специальные отверстия в стенках поршня масло попадает внутрь последнего, а затем направляется в картер.

Направляющая часть (юбка) поршня может быть конусообразной или бочкообразной. Такая конструкция позволяет компенсировать расширение при воздействии высоких температур. На юбке находится отверстие с двумя бобышками, где крепится поршневой палец трубчатой формы, соединяющий поршень с шатуном.

Палец поршня может устанавливаться следующим образом:

Свободный ход в бобышках поршня и головке шатуна (плавающие пальцы)

Вращение в бобышках поршня и фиксация в головке шатуна

Вращение в головке шатуна и фиксация в бобышках поршня

Шатун соединяет поршень с коленвалом. Его верхняя головка движется возвратно-поступательно, а нижняя вращается совместно с шатунной шейкой коленчатого вала, стержень совершает сложное колебательное движение. При работе шатун подвергается растяжению, изгибу и сжатию, поэтому его производят жестким и прочным, а, чтобы уменьшить инерционные силы – легким.

Из чего изготавливают цилиндры и поршни?

Цилиндры изготавливают из чугуна или стали с различными присадками. Это нужно для того, чтобы детали могли выдержать высокие нагрузки. Сегодня блоки цилиндров чаще всего производят из алюминия, а внутренние части цилиндров – из стали, благодаря чему вес конструкции снижается.

Поршни внутри цилиндра двигаются с высокой скоростью и подвержены воздействию высоких давлений и температур. Изначально для производства этих деталей использовался чугун, но с развитием технологий основным материалом для поршней стал алюминий. Это позволило обеспечить меньшую нагрузку на поршни, лучшую теплоотдачу и рост мощности ДВС.

На современных автомобилях, особенно с дизельными двигателями, используются сборные стальные поршни. Они весят меньше алюминиевых, а за счет меньшей компрессионной высоты позволяют использовать шатуны большей длины, тем самым снижая боковые нагрузки в паре «цилиндр-поршень».

Для производства поршневых колец используется высокопрочный серый чугун с добавлением хрома, молибдена, никеля или вольфрама. Эти материалы улучшают приработку элементов и обеспечивают их высокую износо- и термостойкость.

Некоторые производители автокомпонентов для снижения потерь на трение покрывают боковую поверхность поршней специальными материалами на основе графита или дисульфида молибдена. Однако со временем заводское покрытие разрушается и ему требуется восстановление.

Одним из самых эффективных средств для восстановления антифрикционного слоя или нанесения материала на новые поршни является покрытие поршней MODENGY для деталей ДВС. Состав на основе высокоочищенного дисульфида молибдена и графита имеет практичную аэрозольную упаковку с оптимальными параметрами распыления.

Материал равномерно наносится на юбки поршней, не требует высоких температур для полимеризации и создает на поверхности сухую смазочную пленку, которая в течение длительного времени снижает износ и препятствует образованию задиров.

Для подготовки поверхностей перед нанесением покрытия рекомендуется провести их обработку Специальным очистителем-активатором MODENGY. Он убирает все загрязнения с деталей и обеспечивает прочное сцепление покрытия с основанием.

Охлаждение ЦПГ

При работе двигателя выделяется огромное количество тепла. Например, температура сгоревших газов может достигать +2000 °C. Именно поэтому цилиндро-поршневая группа нуждается в эффективном охлаждении.

В современных двигателях система охлаждения может быть жидкостной или воздушной. В первом случае цилиндры ДВС покрыты снаружи большим количеством специальных ребер, которые охлаждаются искусственно созданным или встречным потоком воздуха.

Жидкостное охлаждение подразумевает охлаждение цилиндров при помощи охлаждающей жидкости, которая циркулирует в толще блока снаружи цилиндров. Нагретые элементы отдают часть тепла ОЖ, которая затем попадает в радиатор, охлаждается и заново поступает к цилиндрам.

Система смазки цилиндров

Если внутри цилиндра отсутствует смазочный материал, поршень будет заклинивать, что со временем приведет к поломке двигателя. Для удержания моторного масла на внутренних поверхностях цилиндров на них наносят микросетку при помощи хонингования.

Благодаря этому на стенках всегда находится некоторое количество масла, что снижает трение между поршнем и цилиндром, а также способствует отведению излишков тепла внутри ЦПГ.

Неисправности при эксплуатации

Даже, если эксплуатация автомобиля была правильной и все жидкости менялись вовремя, со временем все равно могут возникнуть проблемы с цилиндро-поршневой группой. Их основная причина заключается в сложных условиях работы ЦПГ.

Высокие нагрузки и температуры приводят к:

Деформации посадочных мест под гильзу

Разрушению, залеганию, закоксовыванию колец

Задирам на юбках поршней из-за сужения зазора между поршнем и цилиндром

Возникновению пробоин, трещин, сколов на рабочих поверхностях цилиндров

Оплавлению или прогару днища поршней

Различным деформациям на теле поршней

Эти и другие неисправности ЦПГ неизбежно возникают при перегреве ДВС, который может быть вызван неисправностью термостата, помпы или разгерметизацией системы охлаждения, сбоями в работе вентилятора охлаждения радиатора, самого радиатора или его датчика.

Определить проблемы в работе цилиндро-поршневой группы можно отметив увеличение расхода масла, ухудшение запуска двигателя, снижение мощности, возникновение стука и шума при работе ДВС. Подобные моменты не следует игнорировать, так как неисправности в ЦПГ неизбежно приведут к дорогостоящему ремонту.

Точно определить состояние поршней и цилиндров позволяет разборка ЦПГ, а также осмотр других систем автомобиля, например, воздушного фильтра. Помимо этого, в ходе диагностики производится замер компрессии в цилиндрах, берутся пробы масла из картера и т.п.

Ресурс ЦПГ зависит от типа двигателя, его режима эксплуатации, сервисного обслуживания и других параметров. В среднем для отечественных автомобилей он составляет около 200 тыс. км, для иномарок – до 500 тыс. км. Существуют так называемые «двигатели-миллионники», ресурс которых может превышать 1 млн. км пробега.

Ремонт цилиндро-поршневой группы двигателя включает в себя замену компрессионных и маслосъемных колец, восстановление и расточку цилиндров, установку новых шатунов и поршней.

Износ цилиндров определяется при помощи специального прибора – индикаторного нутрометра. Сколы и трещины на стенках заваривают или заделывают эпоксидными пастами.

Новые поршни подбираются по массе и диаметру к гильзам, а поршневые пальцы – к втулкам верхних головок шатунов и поршням. Шатуны предварительно проверяют на предмет повреждений и при необходимости восстанавливают или заменяют.

Читать еще:  Как правильно зашиповать резину своими руками?
Ссылка на основную публикацию
Adblock
detector