Содержание

Как увеличить степень сжатия двигателя?

Увеличения степени сжатия, увеличивает мощность

Термическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок к этому, для полной реализации преимуществ этой высокой степени сжатия, на дизельном двигателе никогда не используется дроссельная заслонка.

Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива), дизельный двигатель сжимает воздух в цилиндре очень сильно; при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обедненной смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается.

Нет сомнений в том, что высокая степень сжатия увеличивает мощность. Изображенная далее схема показывает, что мощность при полном открывании дроссельной заслонки теоретически улучшается при увеличении степени сжатия. Приведенные данные предполагают, что увеличение степени сжатия не создает проблем в других областях, таких как детонация т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идет вверх, то при каждом увеличении прирост мощности будет все меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2% роста мощности против 1,3%).

Указанные значения являются типичными для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам во многих форсированных двигателях. Когда продолжительность такта впуска увеличивается (путем установки распределительного вала с более длительным периодом впуска), прирост мощности от увеличения степени сжатия становится даже больше. Это происходит оттого, что данные базируются на механических степенях сжатия (т.е. определенных путем математических расчетов из фиксированного объема), а не на динамических степенях сжатия, которые продолжают увеличиваться, когда эффективность впуска увеличивается. Когда система впуска модифицируется для улучшения наполнения, то динамическая степень сжатия увеличивается очень похожим образом, как и при увеличении размера поршня, т. к. в цилиндр поступает дополнительное количество воздуха и топлива. Эффективность впуска может продолжать увеличиваться даже до точки «упаковки« цилиндра (объемная эффективность выше 100%), как это предполагается некоторыми комбинациями впускного и выпускного коллекторов. Максимальное давление внутри камеры сгорания перед воспламенением изменяется, когда изменяется плотность подаваемой смеси. Когда система впуска работает с низкой эффективностью, т. е. когда дроссельные заслонки закрыты или впускная система забита, то цилиндр наполняется лишь частично и динамическое давление сжатия низкое. Когда система впуска работает с высокой объемной эффективностью (значение более 100% достигается на многих гоночных двигателях), динамическая степень сжатия может создавать давления, которые превышают давления, ожидаемые от механической (рассчитанной) степени сжатия. В таких случаях увеличение механической степени сжатия может ввести двигатель в режим детонации и уменьшить мощность и надежность двигателя.

Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надежность двигателя. Как ранее упоминалось, это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объемной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, так как цилиндр «упаковывается« смесью так, как если бы работал невидимый нагнетатель.

Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объем цилиндра и камеры составляет вместе 416,2 см3, то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличить степень сжатия путем уменьшения объема камеры сгорания или путем увеличения размера выпуклости поршня (это наиболее распространенные методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объем — рабочий объем двигателя не изменялся. Но изменили общий объем цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объемную эффективность двигателя.

Воспользуемся воображаемым примером для уяснения деталей. Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объем (нерабочий объем) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3.278 см3. Это объем, создаваемый поршнем при одном такте плюс объем камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, то объем над поршнем, находящимся в ВМТ должен составлять половину от общего объема цилиндра или 1.639 см3, (т. е. 1.639 см3 «выбранного« объема плюс 1.639 см3 камеры сгорания равны 3.278 см3 общего объема цилиндра). Даже при 3.278 см3 во всем цилиндре двигатель может втянуть только 1.639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненный объем поршня может работать для втягивания воздуха и топлива. Остальные 1.639 см3 будут заполнены выхлопными газами от последнего цикла сгорания.

Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3.278 см3 топливовоздушной смесив цилиндр вместо исходных 1.639 см3, которые двигатель мог «вдохнуть« в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3.278 , см3 свежей смеси в конце такта впуска и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объем камеры сгорания над поршнем в ВМТ со1.639 см3 до 1.092 см3? Когда поршень находится в конце такта впуска, общий объем цилиндра будет теперь только 2.731 см3. Если не изменять давление наддува, то оно может «вдавить« только 2.731 см3 топливовоздушной смеси в цилиндр. Это уменьшит объем смеси на 547 см3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объемная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2.731 см3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из. 17% потерь мощности.

Многие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объемную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объеме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы для увеличения мощности двигателей.

Читать еще:  Как почистить форсунки бензинового двигателя?

Верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, «обычные« форсированные двигатели для повседневного использования как правило работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Увеличение степени сжатия может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1 мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке.

Более высокая степень сжатия, конечно, требует использования высокооктанового топлива и часто имеющееся топливо имеет гораздо меньшее октановое число, чем хотелось бы многим. Имеются несколько путей обойти данную проблему. Если вы изготавливаете двигатель с «нуля« и желаете сберечь время, обратившись к инженеру с опытом изготовления форсированных двигателей, вы можете получить рекомендации по увеличению степени сжатия, приводящему к заметному росту мощности двигателя. В некоторых случаях двигатели со степенью сжатия порядка 11:1 успешно использовали бензин с октановым числом 87, но это требует подбора всех деталей двигателя, особенно конструкции распределительного вала и головки блока цилиндров плюс использование системы впрыска воды.

Если вы выберете метод изготовления с «нуля«, одним из самых легких путей увеличения степени сжатия является использование традиционных поршней для высокой степени сжатия, имеющих минимальную высоту куполообразной части, так что нет сильных помех распространению пламени. Если желаемая степень сжатия не может быть достигнута путем плавного увеличения куполообразной части и уменьшением объема камеры сгорания с помощью обработки головки блока (лучше угловая обработка), то лучшим путем для увеличения степени сжатия будет увеличение диаметра отверстия цилиндра, часто с помощью расточки блока. Выдерживая практические пределы для толщины стенок цилиндров (обычно допускается увеличение диаметра отверстия цилиндра не более чем на 0,75 — 1,0 мм), эта модификация может увеличить степень сжатия путем добавления рабочего объема, что уменьшает необходимость больших «куполов« у поршней или камер сгорания меньшего объема.

Если проект вашего двигателя более «умеренный«, то, возможно, будет достаточно обработки головки блока, а стоимость обработки головки составляет одну из самых дешевых операций по увеличению мощности и экономичности двигателя.

Увеличение степени сжатия

Объем камеры сгорания влияет на конечную степень сжатия двигателя.

Камера сгорания, это объем образуемый головкой блока и поршнем в момент нахождения поршня в верхней мертвой точке. Степень сжатия, это отношение объемов цилиндров от максимального до минимального. Максимальный объем камеры сгорания получается, когда поршень находится в нижней мертвой точке. Минимальный при нахождении поршня в верхней мертвой точке цилиндра.

Объем цилиндра без учета камеры сгорания можно узнать, поделив паспортный рабочий объем двигателя на количество цилиндров.

Объем камеры сгорания состоит из суммы 3 объемов:

1 Объем камеры сгорания на головке блока
2 Объем, образуемый толщиной прокладки головки блока
3 Объем вогнутого пространства в днище поршня.
Справедливости ради стоит сказать, что существует масса вариантов когда поршни выпуклые и при вычислениях они не добавляют, а наоборот уменьшают пространство камеры сгорания. И это нужно учитывать при расчетах.

Степень сжатия и компрессия, это не одно и тоже и различается тем, что степень сжатия это геометрическая величина, а компрессия динамическая. Так как двигатель при вращении обладает некоторыми насосными свойствами, плюс воздух при сжатии нагревается, то величина компрессии будет отличаться от степени сжатия в большую сторону. Компрессия обычно больше в 1.4 раза чем степень сжатия.

Увеличение степени сжатия является одной из основных методик поднятия мощности двигателя, так как чем больше сжать топливовоздушную смесь, тем больше она сможет расшириться относительно сжатого объема при сгорании. Тем самым можно получить больше мощности с того же объема сгоревшего топлива. Одним словом мощность повысится, а расход останется на прежнем уровне. Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня? Дело все в характеристиках бензина не позволяющим поднимать степень сжатия больше определенного уровня, без образования аномальных, нежелательных процессов горения (детонация и др). Октановое число как раз и является основным показателем величины детонационной стойкости топлива и чем это число выше, тем большую степень сжатия можно использовать в двигателе, без образования детонации.

То есть проще говоря, если мы значительно повысим степень сжатия то мощность у нас повысится, но придется заправляться более высокооктановым топливом, а оно стоит дороже. Но с другой стороны, двигатель теперь работает более эффективно и на той мощности на которой вы ездили раньше, он будет потреблять меньше топлива и разность в цене как бы нивелируется! Но правда все же такова, что вы не будете ездить на малой мощности. Иначе зачем нужно было все это затевать?

Степень сжатия можно повысить двумя самыми эффективными способами:

1 установка более тонкой прокладки головки блока, либо спиливание нижней части головки блока. При таком варианте, клапана приближаются к поршню и необходимо делать или увеличивать выборки под них. Изменяются фазы работы ГРМ так как высота цепи или ремня, ответственная за синхронизацию распредвала изменяется на величину, уменьшения высоты позиционирования головки блока. При верхневальном двигателе (распределительный вал находится в головке блока). Настроить работу распределительного вала можно с помощью резрезной шестерни, либо шестерни с несколькими позициями под шпонку. При нижневальном, когда распредвал стоит внизу (в блоке цилиндров) и связь с клапанами происходит посредством толкателей также изменяется кинематика клапанного механизма без гидроусилителей, а с гидроусилителями может не хватить их хода и придется ставить меньшие по длине толкатели. При использовании метода на V образном двигателе при спиливании головок изменится расстояние между посадочными отверстиями впускного коллектора, что потребует его подгонки.

2 Растачивание цилиндров под больший по диаметру поршень. Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, так как камера сгорания остается прежней но объем цилиндра увеличивается. Отношение возросшего цилиндра к прежней камере сгорания покажет большую величину степени сжатия. Метод кроме замены поршней и расточки цилиндра не требует больше каких либо переделок и более предпочтителен для увеличения степени сжатия.

Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9 чем с 13 до 14.

Примеры прибавок в процентах:

с 8 до 9 = 2.0 % прибавка мощности
с 9 до 10 = 1.7 % прибавка мощности
с 10 до 11 = 1.5 % прибавка мощности
с 11 до 12 = 1.3 % прибавка мощности
с 12 до 13 = 1.2 % прибавка мощности
с 13 до 14 = 1.1 % прибавка мощности
с 14 до 15 = 1.0 % прибавка мощности
с 15 до 16 = 0.9 % прибавка мощности
с 16 до 17 = 0.8 % прибавка мощности
Промежуточные результаты суммируются, например поднятие степени сжатия с 8 до 14 даст прибавку 8.7 %

Примеры перехода на более высокооктановое топливо при повышении (СС)

менее 8 — 76 бензин
от 8 до 9 — 80 бензин
от 9 до 10.5 — 92 бензин
от 10 до 12.5 — 95 бензин
от 12 до 14.5 — 98 бензин
от 13.5 до 16 — 102 бензин
от 15.5 до 18 — 109 бензин
Минимальное октановое число топлива применяемое в каждом конкретном двигателе зависит не только от степени сжатия но и в некоторой степени от конструкции формы камеры сгорания, алгоритма работы клапанного механизма, системы зажигания итд. Поэтому более совершенные двигатели могут работать с большими величинами степени сжатия без повышения качества топлива.

Читать еще:  На что влияет ширина и высота шины?

Как поднять компрессию в двигателе и для чего это необходимо

Каждый автолюбитель при проведении тюнинга своего автомобиля преследует определенные цели. При совершенствовании двигателя целями являются или повышение мощности, или изменение данных в целях экономии средств за счет использования более дешевого вида бензина.

В данной статье речь пойдет о том, как поднять компрессию в двигателе, что из этого может получиться, а так же причины данного действия.

Причины для повышения компрессии в двигателе.

На протяжении некоторого времени после приобретения автомобиля, двигатель работает идеально, и никаких причин для того, чтобы заглянуть под капот, нет. Однако использование автомобиля не может происходить без проблем. И вот, автомобиль начинает употреблять немного больше топлива, чем ранее. Это является первой причиной для попытки повысить компрессию.

Второй причиной для совершенствования двигателя является желание повышения мощности при сохранении объема потребляемого топлива.

Решение повышенного употребления топлива вследствие потери компрессии

Итак, высокий расход топлива в большинстве случаев указывает на неправильную работу цилиндров. Вполне вероятна потеря компрессии.

  1. Снижение производительности мотора;
  2. Увеличенное потребление бензина/масла;
  3. Из глушителя выходит темный, густой дым.

При помощи компрессометра проверяется степень сжатия, и выявляются возможные проблемы.

Причины сниженной компрессии:

  • Поврежденные кольца поршня;
  • Трещины в клапанах;
  • Вышел срок использования свечей зажигания.

Устранение дефектов

Изначально необходимо проверить все возможные варианты неисправностей. За тем, после проведения соответствующей проверки, можно легко определить, как повысить компрессию в двигателе. Большинство попросту едут в автомастерские, но можно справиться и самостоятельно, так как увеличить компрессию не так уж сложно.

При частично разобранном двигателе и притирке клапанов можно легко повысить компрессию. Так же можно просто залить масла в цилиндр.

Улучшение мощности двигателя за счет увеличения степени сжатия

Степень сжатия двигателя с завода не установлена на максимальном уровне. Причина этого заключена в качестве топлива, не дающем повысить показатели на максимум, в противном случае можно получить детонацию, которая способна повредить двигатель. В таком случае необходимо точно знать, какая степень сжатия есть и будет, чтобы не навредить главной части автомобиля.

Если все же удалось провести повышение степени сжатия без риска для двигателя, в таком случае придется заправлять более качественным бензином. Однако разница в стоимости перекрывается уменьшением количества употребляемого топлива при увеличении мощности.

Способы изменения степени сжатия

Как увеличить степень сжатия? Существует несколько качественных методов.

  1. Приобретение тонкой прокладки двигателя. Крайне опасный метод, в таком случае клапана могут соприкасаться с поршнями. При решении пойти на такой шаг, необходимо все точно рассчитать. Лучше, если будет установлен новый поршень, у которого более глубокая выемка для клапана. Придется так же перенастроить распределение газа.
  2. Увеличивать объем цилиндров. Этот метод избавляет от необходимости приобретения новых поршней, но вызывает увеличение степени сжатия и объема двигателя.

Работающий двигатель приобретает функции насоса. Прибавим к этому факту нагревание воздуха, и получим увеличение компрессии. В среднем ее показатели больше показателей сжатия практически в полтора раза.

Увеличение степени сжатия смеси впоследствии может вызвать ее расширение, что крайне логично. При этом получаем выход большей мощности при сохранении объема потребляемого бензина. Во избежание детонации приходится использовать бензин с большим октановым числом.

  1. Турбонагнетатель. Не изменяя объемов камеры сгорания так же можно увеличить давление. При запуске в работу нагнетателя начинается увеличенная подача воздуха. При изменении нагрузки на двигатель постоянно изменяется и уровень подаваемого воздуха. Все процессы происходят под контролем электроники, что устраняет все возможные риски для двигателя.

Последний метод является более желаемым для всех автомобилистов. Для увеличения мощности двигателя используются различные типы нагнетателей. Большую популярность данный вид приобрел у владельцев дизельных автомобилей.

Опасность использования бензина с отличающимся октановым числом

Заводы, производящие автомобили, устанавливают необходимые требования и настройки для корректной работы автомобиля. При изменении настроек стоит учитывать и возможные риски для двигателя. Так, изменение показателей качества топлива может так же навредить работе двигателя.

  1. Сгоревшие клапана. Практически самая главная проблема, возникающая при использовании бензина с высоким октановым числом.
  2. Нагар на свечах зажигания.
  3. В случае использования топлива с низшим октановым числом придется столкнуться с не менее серьезной проблемой. Блок управления не сможет устранить детонацию.

В качестве вывода можно отметить, что лучше всего было бы оставить все настройки заводскими. При решении внести изменения в двигатель стоит взвесить все возможные риски остаться впоследствии без автомобиля. В случае переработки двигателя необходимы точные расчеты и лучшим выбором будет посещение специализированных автомобильных мастерских.

Как поднять компрессию в двигателе и для чего это необходимо

  • Причины для повышения компрессии в двигателе.
  • Решение повышенного употребления топлива вследствие потери компрессии
  • Устранение дефектов
  • Улучшение мощности двигателя за счет увеличения степени сжатия
  • Способы изменения степени сжатия
  • Опасность использования бензина с отличающимся октановым числом

Каждый автолюбитель при проведении тюнинга своего автомобиля преследует определенные цели. При совершенствовании двигателя целями являются или повышение мощности, или изменение данных в целях экономии средств за счет использования более дешевого вида бензина.

В данной статье речь пойдет о том, как поднять компрессию в двигателе, что из этого может получиться, а так же причины данного действия.

Причины для повышения компрессии в двигателе.

На протяжении некоторого времени после приобретения автомобиля, двигатель работает идеально, и никаких причин для того, чтобы заглянуть под капот, нет. Однако использование автомобиля не может происходить без проблем. И вот, автомобиль начинает употреблять немного больше топлива, чем ранее. Это является первой причиной для попытки повысить компрессию.

Второй причиной для совершенствования двигателя является желание повышения мощности при сохранении объема потребляемого топлива.

Решение повышенного употребления топлива вследствие потери компрессии

Итак, высокий расход топлива в большинстве случаев указывает на неправильную работу цилиндров. Вполне вероятна потеря компрессии.

  • Снижение производительности мотора;
  • Увеличенное потребление бензина/масла;
  • Из глушителя выходит темный, густой дым.

    При помощи компрессометра проверяется степень сжатия, и выявляются возможные проблемы.

    Причины сниженной компрессии:

    • Поврежденные кольца поршня;
    • Трещины в клапанах;
    • Вышел срок использования свечей зажигания.

    Устранение дефектов

    Изначально необходимо проверить все возможные варианты неисправностей. За тем, после проведения соответствующей проверки, можно легко определить, как повысить компрессию в двигателе. Большинство попросту едут в автомастерские, но можно справиться и самостоятельно, так как увеличить компрессию не так уж сложно.

    При частично разобранном двигателе и притирке клапанов можно легко повысить компрессию. Так же можно просто залить масла в цилиндр.

    Улучшение мощности двигателя за счет увеличения степени сжатия

    Степень сжатия двигателя с завода не установлена на максимальном уровне. Причина этого заключена в качестве топлива, не дающем повысить показатели на максимум, в противном случае можно получить детонацию, которая способна повредить двигатель. В таком случае необходимо точно знать, какая степень сжатия есть и будет, чтобы не навредить главной части автомобиля.

    Если все же удалось провести повышение степени сжатия без риска для двигателя, в таком случае придется заправлять более качественным бензином. Однако разница в стоимости перекрывается уменьшением количества употребляемого топлива при увеличении мощности.

    Способы изменения степени сжатия

    Как увеличить степень сжатия? Существует несколько качественных методов.

  • Приобретение тонкой прокладки двигателя. Крайне опасный метод, в таком случае клапана могут соприкасаться с поршнями. При решении пойти на такой шаг, необходимо все точно рассчитать. Лучше, если будет установлен новый поршень, у которого более глубокая выемка для клапана. Придется так же перенастроить распределение газа.
  • Увеличивать объем цилиндров. Этот метод избавляет от необходимости приобретения новых поршней, но вызывает увеличение степени сжатия и объема двигателя.

    Читать еще:  Как быстро просушить машину?

    Работающий двигатель приобретает функции насоса. Прибавим к этому факту нагревание воздуха, и получим увеличение компрессии. В среднем ее показатели больше показателей сжатия практически в полтора раза.

    Увеличение степени сжатия смеси впоследствии может вызвать ее расширение, что крайне логично. При этом получаем выход большей мощности при сохранении объема потребляемого бензина. Во избежание детонации приходится использовать бензин с большим октановым числом.

    Турбонагнетатель. Не изменяя объемов камеры сгорания так же можно увеличить давление. При запуске в работу нагнетателя начинается увеличенная подача воздуха. При изменении нагрузки на двигатель постоянно изменяется и уровень подаваемого воздуха. Все процессы происходят под контролем электроники, что устраняет все возможные риски для двигателя.

    Последний метод является более желаемым для всех автомобилистов. Для увеличения мощности двигателя используются различные типы нагнетателей. Большую популярность данный вид приобрел у владельцев дизельных автомобилей.

    Опасность использования бензина с отличающимся октановым числом

    Заводы, производящие автомобили, устанавливают необходимые требования и настройки для корректной работы автомобиля. При изменении настроек стоит учитывать и возможные риски для двигателя. Так, изменение показателей качества топлива может так же навредить работе двигателя.

  • Сгоревшие клапана. Практически самая главная проблема, возникающая при использовании бензина с высоким октановым числом.
  • Нагар на свечах зажигания.
  • В случае использования топлива с низшим октановым числом придется столкнуться с не менее серьезной проблемой. Блок управления не сможет устранить детонацию.

    В качестве вывода можно отметить, что лучше всего было бы оставить все настройки заводскими. При решении внести изменения в двигатель стоит взвесить все возможные риски остаться впоследствии без автомобиля. В случае переработки двигателя необходимы точные расчеты и лучшим выбором будет посещение специализированных автомобильных мастерских.

    Недостатки высокой степени сжатия

    Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надежное 11. двигателя. Как ранее упоминалось, это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объемной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, гак как цилиндр «упаковывается» смесью так как если бы работал невидимый нагнеатель.

    Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объем цилиндра и камеры составляет вместе 416,2 см 3 , то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличим, степень сжатия путем уменьшения объема камеры сгорания или путем увеличения размера выпуклости поршня (это наиболее распространенные методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объем — рабочий объем двигателя не изменялся. Но изменили общин объем цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объемную эффективность двигателя. Пример: типичный двигатель «Шевроле» Grand National 350 может использовать степень сжатия 12,5:1. Он также может иметь VE около 115%; таким образом,

    при оборотах динамическая степень сжатия будет заметно выше 12,5:1. Если увеличить статическую степень сжатия до 13,5:1 путем уменьшения объема камеры сгорания, то в объем цилиндра/камеры сгорания поступит меньше рабочей смеси, VE уменьшится и мощность, скорее всего, снизится.

    Воспользуемся воображаемым примером для уяснения деталей. Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объем (нерабочий объем) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3278 см 3 . Это объем, создаваемый поршнем при одном такте плюс объем камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, го объем над поршнем, находящимся в ВМТ должен составлять половину от общего объема цилиндра или 1639 см3, (т. е. 1639 см 3 «выбранного» объема плюс 1639 см 3 камеры сгорания равны 3278 см 3 общего объема цилиндра). Даже при 3278 см 3 во всем цилиндре двигатель может втянуть только 1639 см 3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненным объем поршня может работать для втягивания воздуха и топлива. Остальные 1639 см 3 будут заполнены выхлопными газами от последнего цикла сгорания.

    Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3278 см 3 топливовоздушной смеси в цилиндр вместо исходных 1639 см 3 , которые двигатель мог «вдохнуть» в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3278 см 3 свежей смеси в конце такта впуска и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объем камеры сгорания над поршнем в ВМТ со 1639 см 3 до 1092 см 3 ? Когда поршень находится в конце такта впуска, общин объем цилиндра будет теперь только 2731 см 3 . Если не изменять давление наддува, то оно может «вдавить» только 2731 см 3 топливовоздушной смеси в цилиндр. Это уменьшит объем смеси на 547 см 3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объемная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2731 см 3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из 17% потерь мощности.

    Многие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объемную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объеме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы

    для увеличения мощности двигателей.

    Если на воображаемый двигатель объемом 1639 см 3 со степенью сжатии 2,0:1,

    который втягивает 1639 см 3 топливовоздучпюй смеси (в верху) установить наддув, то он теперь будет заполняться 3278 см 3 смеси (в середине). Если степень сжатия увеличивается до 3,0:1 путем уменьшения объема камеры сгорания, то в двигатель будет поступать только 2731 см 3 топливовоздушной смеси. Результатом будет уменьшение мощности (внизу), т. к. объемная эффективность уменьшилась на 17% 1 — 1639 см 3 ; 2 — 1092 см 3 .

    Степень сжатия и топливо

    Хотя верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, «обычные» форсированные двигатели для повседневного использования как правило работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Увеличение степени сжатия может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1 мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке.

    Лучшим путем увеличения степени сжатия является увеличение диаметра отверстия цилиндра путем расточки блока цилиндров или выбором блока с отверстиями большего диаметра. Эта модернизация может увеличить степень сжатия, путем давления рабочего объема, уменьшая необходимость использования поршней с большими «куполами » или уменьшения объема камер

    Более высокая степень сжатия, конечно, требует использования

  • Ссылка на основную публикацию
    Adblock
    detector