Как определить КПД теплового двигателя?

Тепловой двигатель. Второй закон термодинамики.

Тепловой двигатель (машина)

Тепловой двигатель (машина) – это устройство, которое совершает механическую работу циклически за счет энергии, поступающей к нему в ходе теплопередачи.

Источником поступающего количества теплоты в реальных двигателях могут быть сгорающее органическое топливо, разогретый Солнцем котел, ядерный реактор, геотермальные воды и т.д.

В настоящее время наиболее распространены два типа двигателей: поршневой двигатель внутреннего сгорания (сухопутный и водный транспорт) и паровая или газовая турбина (энергетика).

Первые тепловые двигатели, широко распространившиеся в промышленности, назывались паровыми машинами. К современным тепловым двигателям можно отнести ракетные и авиационные двигатели.

Модель теплового двигателя и ее составные части

В теоретической модели теплового двигателя рассматриваются три тела: нагреватель, рабочее тело и холодильник.

Нагреватель – тепловой резервуар (большое тело), температура которого постоянна.

В каждом цикле работы двигателя рабочее тело получает некоторое количество теплоты от нагревателя, расширяется и совершает механическую работу. Передача части энергии, полученной от нагревателя, холодильнику необходима для возвращения рабочего тела в исходное состояние.

Так как в модели предполагается, что температура нагревателя и холодильника не меняется в ходе работы теплового двигателя, то при завершении цикла: нагревание-расширение-остывание-сжатие рабочего тела считается, что машина возвращается в исходное состояние.

Для каждого цикла на основании первого закона термодинамики можно записать, что количество теплоты Qнагр, полученное от нагревателя, количество теплоты |Qхол|, отданное холодильнику, и совершенная рабочим телом работа А связаны между собой соотношением:

В реальных технических устройствах, которые называются тепловыми машинами, рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Так, в паровой турбине электростанции нагревателем является топка с горячим углем. В двигателе внутреннего сгорания (ДВС) продукты сгорания можно считать нагревателем, а избыток воздуха – рабочим телом. В качестве холодильника в них используется воздух атмосферы или вода природных источников.

КПД теплового двигателя (машины)

Коэффициентом полезного действия теплового двигателя (КПД) называется отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Коэффициент полезного действия любого теплового двигателя меньше единицы и выражается в процентах. Невозможность превращения всего количества теплоты, полученного от нагревателя, в механическую работу является платой за необходимость организации циклического процесса и следует из второго закона термодинамики.

В реальных тепловых двигателях КПД определяют по экспериментальной механической мощности N двигателя и сжигаемому за единицу времени количеству топлива. Так, если за время t сожжено топливо массой m и удельной теплотой сгорания q, то

Для транспортных средств справочной характеристикой часто является объем V сжигаемого топлива на пути s при механической мощности двигателя N и при скорости . В этом случае, учитывая плотность r топлива, можно записать формулу для расчета КПД:

Второй закон термодинамики

Существует несколько формулировок второго закона термодинамики. Одна из них гласит, что невозможен тепловой двигатель, который совершал бы работу только за счет источника теплоты, т.е. без холодильника. Мировой океан мог бы служить для него, практически, неисчерпаемым источником внутренней энергии (Вильгельм Фридрих Оствальд, 1901).

Другие формулировки второго закона термодинамики эквивалентны данной.

Формулировка Клаузиуса (1850): невозможен процесс, при котором тепло самопроизвольно переходило бы от тел менее нагретых к телам более нагретым.

Формулировка Томсона (1851): невозможен круговой процесс, единственным результатом которого было бы производство работы за счет уменьшения внутренней энергии теплового резервуара.

Формулировка Клаузиуса (1865): все самопроизвольные процессы в замкнутой неравновесной системе происходят в таком направлении, при котором энтропия системы возрастает; в состоянии теплового равновесия она максимальна и постоянна.

Формулировка Больцмана (1877): замкнутая система многих частиц самопроизвольно переходит из более упорядоченного состояния в менее упорядоченное. Невозможен самопроизвольный выход системы из положения равновесия. Больцман ввел количественную меру беспорядка в системе, состоящей из многих тел – энтропию.

КПД теплового двигателя с идеальным газом в качестве рабочего тела

Если задана модель рабочего тела в тепловом двигателе (например, идеальный газ), то можно рассчитать изменение термодинамических параметров рабочего тела в ходе расширения и сжатия. Это позволяет вычислить КПД теплового двигателя на основании законов термодинамики.

На рисунке показаны циклы, для которых можно рассчитать КПД, если рабочим телом является идеальный газ и заданы параметры в точках перехода одного термодинамического процесса в другой.

Изобарно-изохорный

Изохорно-адиабатный

Изобарно-адиабатный

Изобарно-изохорно-изотермический

Изобарно-изохорно-линейный

Цикл Карно. КПД идеального теплового двигателя

Наибольшим КПД при заданных температурах нагревателя Tнагр и холодильника Tхол обладает тепловой двигатель, где рабочее тело расширяется и сжимается по циклу Карно (рис. 2), график которого состоит из двух изотерм (2–3 и 4–1) и двух адиабат (3–4 и 1–2).

Теорема Карно доказывает, что КПД такого двигателя не зависит от используемого рабочего тела, поэтому его можно вычислить, используя соотношения термодинамики для идеального газа:

Экологические последствия работы тепловых двигателей

Интенсивное использование тепловых машин на транспорте и в энергетике (тепловые и атомные электростанции) ощутимо влияет на биосферу Земли. Хотя о механизмах влияния жизнедеятельности человека на климат Земли идут научные споры, многие ученые отмечают факторы, благодаря которым может происходить такое влияние:

  1. Парниковый эффект – повышение концентрации углекислого газа (продукт сгорания в нагревателях тепловых машин) в атмосфере. Углекислый газ пропускает видимое и ультрафиолетовое излучение Солнца, но поглощает инфракрасное излучение, идущее в космос от Земли. Это приводит к повышению температуры нижних слоев атмосферы, усилению ураганных ветров и глобальному таянию льдов.
  2. Прямое влияние ядовитых выхлопных газов на живую природу (канцерогены, смог, кислотные дожди от побочных продуктов сгорания).
  3. Разрушение озонового слоя при полетах самолетов и запусках ракет. Озон верхних слоев атмосферы защищает все живое на Земле от избыточного ультрафиолетового излучения Солнца.

Выход из создающегося экологического кризиса лежит в повышении КПД тепловых двигателей (КПД современных тепловых машин редко превышает 30%); использовании исправных двигателей и нейтрализаторов вредных выхлопных газов; использовании альтернативных источников энергии (солнечные батареи и обогреватели) и альтернативных средств транспорта (велосипеды и др.).

Тепловой двигатель

Термодинамика возникла как наука с основной задачей – созданием наиболее эффективных тепловых машин.

Тепловая машина или тепловой двигатель – это периодически действующий двигатель, совершающий работу за счет получения теплоты.

Обычно совершение работы в тепловом двигателе производится газом при его расширении. Газ, находящийся в нем, получил название рабочего тела. Зачастую его заменяют на воздух или водяные пары. Расширение газа происходит по причине повышения его температуры и давления.

Устройство, от которого рабочее тело получает тепло Q n , называю нагревателем.

Это понимается как расширение от объема V 1 к V 2 V 2 > V 1 , затем сжатие до первоначального объема. Чтобы значение совершаемой работы за цикл было больше нуля, необходимо температуру и давление увеличить и сделать больше, чем при его сжатии. То есть при расширении телу сообщается определенное количество теплоты, а при сжатии отнимается. Значит, кроме нагревателя тепловой двигатель должен иметь холодильник, которому рабочее тело может отдавать тепло.

Рабочее тело совершает работу циклично. Очевидно, изменение внутренней энергии газа в двигателе равняется нулю. Если при расширении от нагревателя к рабочему телу передается теплота в количестве Q n , то при сжатии Q ‘ c h теплота рабочего тела передается холодильнику по первому закону термодинамики, учитывая, что ∆ U = 0 , то значение работы газа в круговом процессе запишется как:

A = Q n — Q ‘ c h ( 1 ) .

Отсюда теплота Q ‘ c h ≠ 0 . Выгодность двигателя определяется по количеству выделенной и превращенной теплоты, полученной от нагревателя, в работу. Его эффективность характеризуется коэффициентом полезного действия (КПД), определяющимся как:

Запись уравнения ( 2 ) при учитывании ( 1 ) примет вид:

η = Q n — Q ‘ c h Q n ( 3 ) , КПД всегда.

Машина, отбирающая от тела с меньшей температурой определенное количество теплоты Q c h и отдающая его Q ‘ n телу с наиболее высокой температурой с Q ‘ n > Q c h , получила название холодильной машины.

Данная машина должна совершить работу A ‘ в течение цикла. Эффективность холодильной машины определяется по холодильному коэффициенту, вычисляемому:

Читать еще:  Как вычислить лошадиные силы двигателя?

a = Q ‘ n A ‘ = Q ‘ n Q ‘ n — Q c h ( 4 ) .

КПД необратимого теплового двигателя всегда меньше, чем работающего по обратимому циклу.

КПД теплового двигателя

Французским инженером Саади Карно была установлена зависимость КПД теплового двигателя от температуры нагревателя T n и холодильника T c h . Форма конструкции теплового двигателя и выбор рабочего тела не влияет на КПД идеальной тепловой машины:

η m a x = T n — T c h T n ( 5 ) .

Любой реальный тепловой двигатель может обладать КПД η ≤ η m a x .

Принцип работы теплового двигателя

Идеальная машина, модель которой разработал Карно, работает по обратимому циклу, состоящему из двух изотерм ( 1 — 2 , 4 — 3 ) и двух адиабат ( 2 — 3 , 4 — 1 ) , изображенная на рисунке 1 . В качестве рабочего тела выбран идеальный газ. Прохождение адиабатного процесса происходит без подвода и отвода тепла.

Участок 1 — 2 характеризуется сообщением рабочему телу от нагревателя с температурой T n количества тепла Q n . При изотермическом процессе запись примет вид:

Q n = T n ( S 2 — S 1 ) ( 6 ) , где S 1 , S 2 являются энтропиями в соответствующих точках цикла из рисунка 1 .

Видно, что участок 3 — 4 характеризуется отдачей тепла холодильнику с температурой T c h идеальным газом, причем количество теплоты равняется получению газом теплоты — Q c h , тогда:

— Q c h = T c h ( S 1 — S 2 ) ( 7 ) .

Выражение, записанное в скобках в ( 7 ) , указывает на приращение энтропии процесса 3 — 4 .

Принцип действия тепловых двигателей КПД

Произведем подстановку ( 6 ) , ( 7 ) в определение КПД теплового двигателя и получаем:

η = T n ( S 2 — S 1 ) + T c h ( S 1 — S 2 ) T n ( S 2 — S 1 ) = T n — T c h T n ( 8 ) .

В выведенном выражении ( 8 ) не выполнялось предположений о свойствах рабочего тела и устройстве теплового двигателя.

По уравнению ( 8 ) видно, что для увеличения КПД следует повышать T n и понижать T c h . Достижение значения абсолютного нуля невозможно, поэтому единственное решение для роста КПД – увеличение T n .

Задача по созданию теплового двигателя, совершающего работу без холодильника, очень интересна. В физике она получила название вечного двигателя второго рода. Такая задача не находится в противоречии с первым законом термодинамики. Данная проблема считается неразрешимой, как и создание вечного двигателя первого рода. Этот опытный факт в термодинамике приняли в качестве постулата – второго начала термодинамики.

Рассчитать КПД теплового двигателя с температурой нагревания 100 ° С и температурой холодильника, равной 0 ° С . Считать тепловую машину идеальной.

Необходимо применение выражения для КПД теплового двигателя, которое записывается как:

η = T n — T c h T n .

Используя систему С И , получим:

T n + 100 ° C + 273 = 373 ( К ) . T c h = 0 ° C + 273 = 273 ( К ) .

Подставляем числовые значения и вычисляем:

η = 373 — 273 373 = 0 , 27 = 27 % .

Ответ: КПД теплового двигателя равняется 27 % .

Найти КПД цикла, представленного на рисунке 2 , если в его пределах объем идеального газа проходит изменения n раз. Считать рабочим веществом газ с показателем адиабаты γ .

Основная формула для вычисления КПД, необходимая для решения данной задачи:

η = Q n — Q ‘ n Q n ( 2 . 1 ) .

Получения тепла газом происходит во время процесса 1 — 2 Q 12 = Q n :

Q 12 = ∆ U 12 + A 12 ( 2 . 2 ) , где A 12 = 0 потому как является изохорным процессом. Отсюда следует:

Q 12 = ∆ U 12 = i 2 R T 2 — T 1 ( 2 . 3 ) .

Процесс, когда газ отдает тепло, обозначается как 3 — 4 , считается изохорным — Q 34 = Q ‘ c h . Формула примет вид:

Q 34 = ∆ U 34 = i 2 v R T 4 — T 3 ( 2 . 4 ) .

Адиабатные процессы проходят без подвода и отвода тепла.

Произведем подстановку полученных количеств теплоты в выражение для КПД, тогда:

η = i 2 v R T 2 — T 1 + i 2 v R T 4 — T 3 i 2 v R T 2 — T 1 = T 2 — T 1 + T 4 — T 3 T 2 — T 1 = 1 — T 3 — T 4 T 2 — T 1 ( 2 . 5 ) .

Следует применить уравнение для адиабаты процессу 2 — 3 :

T 2 V 1 γ — 1 = T 3 V 2 γ — 1 → T 2 = T 3 V 2 γ — 1 V 1 γ — 1 = T 3 n γ — 1 ( 2 . 6 ) .

Используем выражение для адиабаты процесса 4 — 1 :

T 1 V 1 γ — 1 = T 3 V 2 γ — 1 → T 1 = T 4 V 2 γ — 1 V 1 γ — 1 = T 4 n γ — 1 ( 2 . 7 ) .

Перейдем к нахождению разности температур T 2 — T 1 :

T 2 — T 1 = T 3 — T 4 n Г — 1 ( 2 . 8 ) .

Произведем подстановку из ( 2 . 8 ) в ( 2 . 5 ) :

η = 1 — T 3 — T 4 T 3 — T 4 n γ — 1 = 1 — 1 n γ — 1 = 1 — n 1 — γ ( 2 . 9 ) .

Ответ: КПД цикла равняется η = 1 — n 1 — Г .

Принцип действия теплового двигателя

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Темой текущего урока будет рассмотрение процессов, происходящих во вполне конкретных, а не абстрактных, как в прошлых уроках, устройствах – тепловых двигателях. Мы дадим определение таким машинам, опишем их основные составляющие и принцип действия. Также в ходе этого урока будет рассмотрен вопрос о нахождении КПД – коэффициента полезного действия тепловых машин, как реального, так и максимально возможного.

Тема: Основы термодинамики
Урок: Принцип действия теплового двигателя

1. Тепловые двигатели

Темой прошлого урока был первый закон термодинамики, который задавал связь между некоторым количеством теплоты, которое было передано порции газа, и работой, совершаемой этим газом при расширении. И теперь пришло время сказать, что эта формула вызывает интерес не только при неких теоретических расчётах, но и во вполне практическом применении, ведь работа газа есть не что иное как полезная работа, какую мы извлекаем при использовании тепловых двигателей.

Определение. Тепловой двигатель – устройство, в котором внутренняя энергия топлива преобразуется в механическую работу (рис. 1).

Рис. 1. Различные примеры тепловых двигателей (Источник), (Источник)

Как видно из рисунка, тепловыми двигателями являются любые устройства, работающие по вышеуказанному принципу, и они варьируются от невероятно простых до очень сложных по конструкции.

Все без исключения тепловые двигатели функционально делятся на три составляющие (см. рис. 2):

  • Нагреватель
  • Рабочее тело
  • Холодильник

Рис. 2. Функциональная схема теплового двигателя (Источник)

2. Работа газа в тепловых двигателях

Нагревателем является процесс сгорания топлива, которое при сгорании передаёт большое количество теплоты газу, нагревая тот до больших температур. Горячий газ, который является рабочим телом, вследствие повышения температуры, а следовательно, и давления, расширяется, совершая работу . Конечно же, так как всегда существует теплопередача с корпусом двигателя, окружающим воздухом и т. д., работа не будет численно равняться переданной теплоте – часть энергии уходит на холодильник, которым, как правило, является окружающая среда.

Проще всего можно представить себе процесс, происходящий в простом цилиндре под подвижным поршнем (например, цилиндр двигателя внутреннего сгорания). Естественно, чтобы двигатель работал и в нём был смысл, процесс должен происходить циклически, а не разово. То есть после каждого расширения газ должен возвращаться в первоначальное положение (рис. 3).

Рис. 3. Пример циклической работы теплового двигателя (Источник)

Для того чтобы газ возвращался в начальное положение, над ним необходимо выполнить некую работу (работа внешних сил). А так как работа газа равна работе над газом с противоположным знаком, для того чтобы за весь цикл газ выполнил суммарно положительную работу (иначе в двигателе не было бы смысла), необходимо, чтобы работа внешних сил была меньше работы газа. То есть график циклического процесса в координатах P-V должен иметь вид: замкнутый контур с обходом по часовой стрелке. При данном условии работа газа (на том участке графика, где объём растёт) больше работы над газом (на том участке, где объём уменьшается) (рис. 4).

Рис. 4. Пример графика процесса, протекающего в тепловом двигателе

Раз мы говорим о некоем механизме, обязательно нужно сказать, каков его КПД.

3. Коэффициент полезного действия тепловых двигателей

Определение. КПД (Коэффициент полезного действия) теплового двигателя – отношение полезной работы, выполненной рабочим телом, к количеству теплоты, переданной телу от нагревателя.

Если же учесть сохранение энергии: энергия, отошедшая от нагревателя, никуда не исчезает — часть её отводится в виде работы, остальная часть приходит на холодильник:

Это выражение для КПД в частях, при необходимости получить значение КПД в процентах необходимо умножить полученное число на 100. КПД в системе измерения СИ – безразмерная величина и, как видно из формулы, не может быть больше одного (или 100).

Следует также сказать, что данное выражение называется реальным КПД или КПД реальной тепловой машины (теплового двигателя). Если же предположить, что нам каким-то образом удастся полностью избавиться от недостатков конструкции двигателя, то мы получим идеальный двигатель, и его КПД будет вычисляться по формуле КПД идеальной тепловой машины. Эту формулу получил французский инженер Сади Карно (рис. 5):

То есть КПД идеального двигателя зависит только от температур нагревателя и холодильника.

Рис. 5. Сади Карно (Источник)

Для понимания того, какого порядка значения КПД различных тепловых машин, рассмотрим следующую таблицу, в которой приведены различные примеры тепловых двигателей (рис. 6):

Читать еще:  Как покрасить диски жидкой резиной своими руками?

Темой следующего урока будет рассмотрение тепловых процессов, проходящих без притока теплоты, – адиабатических.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. – М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. – М.: Дрофа, 2010.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Files.school-collection.edu.ru (Источник).
  2. Фестиваль педагогически идей (Источник).
  3. Кафедра ТЭФ, КМФ (Источник).

Домашнее задание

  1. Стр. 87: № 676–680. Физика. Задачник. 10-11 классы. Рымкевич А.П. – М.: Дрофа, 2013. (Источник)
  2. При сгорании топлива в тепловом двигателе выделилось количество теплоты 20 кДж, а холодильнику передалось 120 кДж. Каков КПД двигателя?
  3. Какой КПД идеальной тепловой машины, если температура нагревателя равна 347, а температура холодильника – 37?
  4. *Может ли процесс, происходящий с газом в тепловом двигателе, быть описан следующим образом в координатах P-V?

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Физика. 10 класс

Конспект урока

Физика, 10 класс

Урок 25. Тепловые двигатели. КПД тепловых двигателей

Перечень вопросов, рассматриваемых на уроке:

1) Понятие теплового двигателя;

2)Устройство и принцип действия теплового двигателя;

3)КПД теплового двигателя;

Глоссарий по теме

Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.

КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.

Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Цикл Карно – это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.

Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.

Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).

Рабочее тело — тело, которое расширяясь, совершает работу (им является газ или пар)

Основная и дополнительная литература по теме урока:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.

2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа,2014. – С. 87 – 88.

Открытые электронные ресурсы по теме урока

Теоретический материал для самостоятельного изучения

Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу. Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве. Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д. Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу. На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.

Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.

Вспомним строение простейшего двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень. Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным. Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.

Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.

Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.

Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.

В третьем такте, когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи. Воспламенившаяся смесь образует раскаленные газы, давление которых составляет 3 -6 МПа, а температура достигает 1600 -2200 градусов. Сила давления толкает поршень вниз, движение которого передается коленчатому валу с маховиком. Получив сильный толчок маховик будет дальше вращаться по инерции, обеспечивая движение поршня и при последующих тактах. Во время этого такта оба клапана остаются закрытыми.

В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.

Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.

Для определения эффективности работы теплового двигателя вводят понятие КПД.

Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Q1 – количество теплоты полученное от нагревания

Q2 – количество теплоты, отданное холодильнику

– работа, совершаемая двигателем за цикл.

Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.

Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле

Передача неиспользуемой части энергии холодильнику.

В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов

Цикл Карно — самый эффективный цикл, имеющий максимальный КПД.

Не существует теплового двигателя, у которого КПД = 100% или 1.

Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.

Сравним эксплуатационные характеристики тепловых двигателей.

Паровой двигатель – 8%.

Паровая турбина – 40%.

Газовая турбина – 25-30%.

Двигатель внутреннего сгорания – 18-24%.

Дизельный двигатель – 40– 44%.

Реактивный двигатель – 25%.

Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.

Примеры и разбор решения заданий

1. Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?

Читать еще:  На сколько турбина увеличивает мощность двигателя?

Дано: v=180км/ч = 50 м/с, V = 15 л = 0,015 м 3 , s = 100 км = 10 5 м, ɳ = 25% = 0,25, ρ = 700 кг/м 3 , q = 46 × 10 6 Дж/кг.

Запишем формулу для расчёта КПД теплового двигателя:

Работу двигателя, можно найти, зная время работы и среднюю мощность двигателя:

Количество теплоты, выделяющееся при сгорании бензина, находим по формуле:

Учитывая всё это, мы можем записать:

Время работы двигателя можно найти по формуле:

Из формулы КПД выразим среднюю мощность:

.

Подставим числовые значения величин:

После вычислений получаем, что N=60375 Вт.

Ответ: N=60375 Вт.

2. Тепловая машина имеет КПД 25 %. Средняя мощность передачи теплоты холодильнику составляет 4 кВт. Какое количество теплоты рабочее тело получает от нагревателя за 20 с?

Дано: ɳ = 25%, N = 4000 Вт, t = 20 с.

=

– это количество теплоты, отданное холодильнику

Как определить КПД теплового двигателя?

«Физика — 10 класс»

Что такое термодинамическая система и какими параметрами характеризуется её состояние.
Сформулируйте первый и второй законы термодинамики.

Именно создание теории тепловых двигателей и привело к формулированию второго закона термодинамики.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели — устройства, способные совершать работу. Большая часть двигателей на Земле — это тепловые двигатели.

Тепловые двигатели — это устройства, превращающие внутреннюю энергию топлива в механическую работу.

Принцип действия тепловых двигателей.

Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счёт повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т1 называют температурой нагревателя.

Роль холодильника.

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т2, которая обычно несколько выше температуры окружающей среды. Её называют температурой холодильника. Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы. В последнем случае температура холодильника может быть немного ниже температуры окружающего воздуха.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть тепла неизбежно передаётся холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин.

Эта часть внутренней энергии топлива теряется. Тепловой двигатель совершает работу за счёт внутренней энергии рабочего тела. Причём в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику). Принципиальная схема теплового двигателя изображена на рисунке 13.13.

Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q1, совершает работу А’ и передаёт холодильнику количество теплоты Q2

Так как у всех двигателей некоторое количество теплоты передаётся холодильнику, то η

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Идеальная тепловая машина Карно работает по циклу, состоящему из двух изотерм и двух адиабат, причем эти процессы считаются обратимыми (рис. 13.14). Сначала сосуд с газом приводят в контакт с нагревателем, газ изотермически расширяется, совершая положительную работу, при температуре Т1, при этом он получает количество теплоты Q1.

Затем сосуд теплоизолируют, газ продолжает расширяться уже адиабатно, при этом его температура понижается до температуры холодильника Т2. После этого газ приводят в контакт с холодильником, при изотермическом сжатии он отдаёт холодильнику количество теплоты Q2, сжимаясь до объёма V4

Как следует из формулы (13.17), КПД машины Карно прямо пропорционален разности абсолютных температур нагревателя и холодильника.

Главное значение этой формулы состоит в том, что в ней указан путь увеличения КПД, для этого надо повышать температуру нагревателя или понижать температуру холодильника.

Любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины: Процессы, из которых состоит цикл реальной тепловой машины, не являются обратимыми.

Формула (13.17) даёт теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем больше разность температур нагревателя и холодильника.

Лишь при температуре холодильника, равной абсолютному нулю, η = 1. Кроме этого доказано, что КПД, рассчитанный по формуле (13.17), не зависит от рабочего вещества.

Но температура холодильника, роль которого обычно играет атмосфера, практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твёрдое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счёт уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д.

Для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 — 800 К и Т2 — 300 К. При этих температурах максимальное значение коэффициента полезного действия равно 62 % (отметим, что обычно КПД измеряют в процентах). Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40 %. Максимальный КПД — около 44% — имеют двигатели Дизеля.

Охрана окружающей среды.

Трудно представить современный мир без тепловых двигателей. Именно они обеспечивают нам комфортную жизнь. Тепловые двигатели приводят в движение транспорт. Около 80 % электроэнергии, несмотря на наличие атомных станций, вырабатывается с помощью тепловых двигателей.

Однако при работе тепловых двигателей происходит неизбежное загрязнение окружающей среды. В этом заключается противоречие: с одной стороны, человечеству с каждым годом необходимо всё больше энергии, основная часть которой получается за счёт сгорания топлива, с другой стороны, процессы сгорания неизбежно сопровождаются загрязнением окружающей среды.

При сгорании топлива происходит уменьшение содержания кислорода в атмосфере. Кроме этого, сами продукты сгорания образуют химические соединения, вредные для живых организмов. Загрязнение происходит не только на земле, но и в воздухе, так как любой полёт самолёта сопровождается выбросами вредных примесей в атмосферу.

Одним из следствий работы двигателей является образование углекислого газа, который поглощает инфракрасное излучение поверхности Земли, что приводит к повышению температуры атмосферы. Это так называемый парниковый эффект. Измерения показывают, что температура атмосферы за год повышается на 0,05 °С. Такое непрерывное повышение температуры может вызвать таяние льдов, что, в свою очередь, приведёт к изменению уровня воды в океанах, т. е. к затоплению материков.

Отметим ещё один отрицательный момент при использовании тепловых двигателей. Так, иногда для охлаждения двигателей используется вода из рек и озёр. Нагретая вода затем возвращается обратно. Рост температуры в водоёмах нарушает природное равновесие, это явление называют тепловым загрязнением.

Для охраны окружающей среды широко используются различные очистительные фильтры, препятствующие выбросу в атмосферу вредных веществ, совершенствуются конструкции двигателей. Идёт непрерывное усовершенствование топлива, дающего при сгорании меньше вредных веществ, а также технологии его сжигания. Активно разрабатываются альтернативные источники энергии, использующие ветер, солнечное излучение, энергию ядра. Уже выпускаются электромобили и автомобили, работающие на солнечной энергии.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Основы термодинамики. Тепловые явления — Физика, учебник для 10 класса — Класс!ная физика

Ссылка на основную публикацию
Adblock
detector