На сколько турбина увеличивает мощность двигателя?

Как работают турбины

Турбина может существенно увеличить мощность двигателя без значительного роста его веса

Когда говорят о гоночных или спортивных машинах, часто всплывает тема турбонаддува. Турбины неизменно сопровождают современные дизеля. Турбина может существенно увеличить мощность двигателя без значительного роста его веса. Это большое преимущество привело к популярности турбин!

Давайте разберемся, как турбина увеличивает мощность, выживая при этом в экстремальных условиях работы. Мы познакомимся с вестгейтами, керамическими лопастями турбин и подшипниками, которые помогают турбинам делать работу еще лучше. Турбины – системы принудительного нагнетания воздуха. Они сжимают воздух. Сжатый воздух дает преимущество по мощности: в двигатель поступает больше воздуха, а это значит, что больше топлива может быть добавлено. Следовательно, каждое сгорание смеси в цилиндре дает больше мощности. Турбированный двигатель в общем случае всегда мощнее аналогичного по объему атмосферного. Двигатель меньшей массы может выдавать больше мощности при наличии наддува.

Чтобы создать давление воздуха, турбина использует поток выхлопных газов из двигателя для раскручивания своей крыльчатки, которая в свою очередь раскручивает воздушный насос. Турбина вращается с частотой до 150,000 об/мин – это в 30 раз быстрее среднего двигателя. Так как турбина работает с выхлопными газами, ей приходится выдерживать большие термические нагрузки.
Чтобы снять больше мощности с двигателя, необходимо увеличить количество топливно-воздушной смеси, которая сгорает в цилиндрах. Один из способов – добавить количество цилиндров или увеличить их объем. Часто эти изменения очень дороги. Турбина дешевле добавляет мощность, и именно поэтому она так популярна на вторичном рынке.


Расположение турбины в машине

Турбина позволяет сгорать большему количеству топлива, увеличивая количество топлива и воздуха в цилиндрах. Типичная прибавка к давлению от турбины – 0.3 – 0.5 бар. Поскольку атмосферное давление на уровне моря 1 бар, легко подсчитать, что в камеры сгорания попадает на 50 % больше воздуха, следовательно увеличение мощности должно доходить до 50%. В действительности, эффект получается 30- 40 %.

Одна из причин этой неэффективности – сила, раскручивающая турбину, не приходит извне. Наличие турбины увеличивает сопротивление выхлопа. Это означает, что на отводе отработавших газов двигатель вынужден преодолевать возросшее обратное сопротивление, что уменьшает отдачу с цилиндров, в которых в этот момент происходит сгорание.


Турбина и ее внешние компоненты

Турбина крепится на выхлопном коллекторе двигателя. Выхлопные газы двигателя раскручивают турбину. Турбина покоится на одном валу с компрессором, который располагается между воздушным фильтром и впускным коллектором. Компрессор накачивает воздух в цилиндры.


Внутри турбины

Выхлопной газ из цилиндров проходит через лопатки крыльчатки турбины, вызывая ее вращение. Чем больше выхлопных газов проходит, тем быстрее крутится турбина.

С другой стороны вала турбины устанавливают компрессор центробежного типа – он засасывает воздух в центре крыльчатки и разбрасывает его от центра из-за вращающегося вала.

Слишком много давления?
Воздух закачивается в цилиндры под давление и дальше сжимается поршнями. В этом кроится опасность – детонация. Детонация происходит из-за резкого увеличения температуры воздуха, при котором топливная смесь сгорает до воспламенения свечи. Поэтому турбированные машины обычно ездят на высокооктановом топливе, чтобы не доводить дело до детонации. Если давление наддува очень высоко, компрессию двигателя можно снизать, чтобы не переходить в детонацию.

Чтобы работать на скоростях до 150,000 об/мин, вал турбины требует серьезной защиты. Большинство подшипников взрываются при таких скоростях, поэтому турбины часто используют жидкие подшипники. Этот тип подшипников создает вокруг вала постоянный тонкий слой масла, которое постоянно накачивается насосом. Это служит двум целям: охлаждение и снижение трения.
В следующей главе рассмотрим компромиссы, на которые вынуждены идти инженеры при проектировании турбонаддува..

Способы повышения мощности дизелей. Турбонаддув

Из формулы для определения эффективной мощности дизеля:

можно определить способы повышения мощности. Таковыми являются:

1. Увеличение диаметра цилиндра D , целесообразно до определенного предела. С увеличением диаметра цилиндра увеличиваются инерционные силы, действующие на подвижные части дизеля, возрастают массогабаритные показатели двигателя. В настоящее время диаметр цилиндров наиболее мощных МОД достигает 105…106 см;

2. Увеличение хода поршня S (расширение области применения длинноходовых дизелей). Ход поршня дизельного двигателя тесно связан с диаметром цилиндра соотношением S D . Для различных классов дизелей существуют рекомендованные значения соотношения S D . Поэтому этот способ увеличения мощности непосредственно связан с предыдущим.

3. Увеличение числа цилиндров i – для этого способа увеличения мощности дизеля так же существует разумный предел. Увеличение числа цилиндров двигателя значительно усложняет его конструкцию, снижает показатели надежности. В современных дизелях число цилиндров достигает: в МОД –до 12, в СОД – до 18, в ВОД – до 50;

4. Расширение области применения двухтактных дизелей ( z =1), имеющих большие возможности по дальнейшему снижению удельных массогабаритных показателей, чем четырехтактные дизели;

5. Увеличение числа оборотов n (форсирование дизеля) – приводит к значительному снижению ресурсных показателей двигателя, особенно у ВОД (высокооборотный двигатель);

6. Повышение среднего эффективного давления pe за счет увеличения плотности воздуха, вводимого в цилиндр.

Последний способ является наиболее эффективным и получил наименование «наддува дизеля». Использование наддува дает возможность в несколько раз (4 ÷ 5) увеличить удельную мощность двигателя без изменения его основных размеров только за счет повышения давления наддувочного воздуха – pК , и надлежащего его охлаждения.

Наддув дизеля может осуществляться следующими способами: механическим, газотурбинным и комбинированным.

При механическом наддуве нагнетатель поршневого, ротативного или центробежного типа приводится в действие от коленчатого вала двигателя. Применение механического наддува влечет за собой потерю мощности двигателя на привод компрессора, которая может достигать 7 ÷ 10 % от эффективной мощности двигателя. В чистом виде механический наддув в современных дизелях, как правило, не применяется.

В настоящее время в двух- и четырехтактных дизелях применяют газотурбинный наддув. Он может осуществляться следующими способами:

— турбонаддув с изобарной турбиной : при этом способе наддува выхлопные газы собираются в выхлопном коллекторе. В коллекторе происходит выравнивание давления газов и поля скоростей. Из выхлопного коллектора при постоянном давлении газы подаются на рабочие лопатки газовой турбины, приводящей во вращение компрессор;

— турбонаддув с импульсной турбиной: при таком способе наддува используется кинетическая энергия газов в виде импульсов в периоды свободного выпуска. Соединительные трубы между выпускными окнами или клапанами и газовыми турбинами делаются как можно короче с целью уменьшения дросселирования газов в выхлопном патрубке и максимального сохранения их кинетической и тепловой энергии.

Рабочий цикл дизельного двигателя без наддува состоит из следующих термодинамических процессов (рис. 27):

Рабочий цикл дизеля с изобарным наддувом состоит из следующих термодинамических процессов (рис. 28):

  • 1− 2 – адиабатное сжатие воздуха в рабочем цилиндре двигателя;
  • 2 − 3 – изохорный подвод тепла Q1′ в цилиндре при сжигании части топлива в конце такта сжатия;
  • 3 − 4 – изобарный подвод тепла Q 1′′ при сжигании части топлива в начале такта расширения;
  • 4 − 5 – адиабатное расширение газов в цилиндре двигателя;
  • 5 −1 – изохорный отвод тепла в газовыхлопной коллектор;
  • 9 − 6 – изобарный подвод теплоты Q2 к рабочему телу (выравнивание давлений газов в коллекторе перед подачей их в изобарную турбину);
  • 6 − 7 – адиабатное расширение газов в газовой турбине;
  • 7 − 8 – изобарный отвод теплоты Q2′ к холодному источнику (выброс выхлопных газов в атмосферу;
  • 8 − 9 – адиабатное сжатие воздуха в турбокомпрессоре;
  • 9 −1 – изобарный отвод теплоты Q2′′ в охладителе надувочного воздуха

Площадь фигуры a − 6 − 7 − b на диаграмме численно равна работе, совершаемой при расширении газов в газовой турбине. Площадь фигуры a − 9 − 8 − b численно равна работе, затраченной на сжатие воздуха в компрессоре. Площадь, ограниченная фигурой 6 − 7 − 8 − 9 численно равна полезной работе, полученной при использовании турбокомпрессора (приращение полезной работы цикла с изобарной турбиной).

Термодинамический цикл дизеля с импульсным наддувом, в отличие от изобарного, имеет следующие особенности (рис. 29):

  • 5 − 6 – продукты сгорания, совершив работу расширения в цилиндре двигателя, без потерь поступают в газовую турбину, где продолжается их дальнейшее расширение;
  • 6 − 7 – изобарный отвод теплоты Q′2 от продуктов сгорания к холодному источнику (выброс газов в атмосферу);
  • 7 − 8 – адиабатное сжатие воздуха в турбокомпрессоре;
  • 8 −1 – изобарный отвод теплоты Q′′2 от сжатого воздуха в воздухоохладителе.

Площадь диаграммы a − 5 − 6 − b численно равна работе, совершаемой газами в газовой турбине; площадь диаграммы c − 8 − 7 − b – работе сжатия компрессора. Площадь фигуры 1 − 5 − 6 − 7 − 8 численно равна полезной работе турбокомпрессора с импульсной турбиной (приращение полезной работы цикла с импульсной турбиной).

Читать еще:  Как выбрать бустер для запуска двигателя?

Применение газотурбинного наддува дизельного двигателя позволяет:

  • — наиболее полно использовать тепловую и кинетическую энергию продуктов сгорания, покидающих цилиндры двигателя (т.е уменьшить потери с уходящими газами QГ – самую большую составляющую тепловых потерь дизельного двигателя);
  • — без дополнительных затрат энергии осуществить сжатие воздуха, подаваемого в цилиндры двигателя, что в свою очередь повышает среднее эффективное давление и, соответственно, мощность дизеля;
  • — за счет использования перечисленных мероприятий повысить общий КПД дизельной энергетической установки.

Основные компоновочные схемы дизельных двигателей с наддувом

Все компоновочные схемы судовых дизельных установок с наддувом можно разделить на три большие группы:

  • схемы наддува с механической связью между поршневым двигателем и наддувочным агрегатом (схемы с подключенным турбокомпрессором);
  • схемы наддува с газовой связью (со свободным турбокомпрессором);
  • комбинированые схемы наддува , включающие сочетания механической и газовой связи, либо использование различных способов газотурбинного наддува (изобарный и импульсный наддувы).

Ниже рассмотрены наиболее часто применяемые схемы осуществления механического, газового и комбинированного наддува дизелей, их особенности, преимущества и недостатки.

Схема наддува с механической связью

В схеме наддува с механической связью (рис. 31.а) компрессор приводится в действие непосредственно от коленчатого вала дизеля через повышающую механическую передачу – мультипликатор. Сжатый в компрессоре воздух поступает в воздухоохладитель, где от него отводится часть теплоты (повышается плотность заряда воздуха), и затем направляется в наддувочный ресивер двигателя.

Основным недостатком схемы является тот факт, что на привод компрессора затрачивается значительная часть мощности (от 7 до 10 %), полученной в рабочих цилиндрах двигателя (потери N К ). Это в свою очередь приводит к некоторому снижению мощности двигателя и его экономичности. Такая схема обычно применяется в дизелях с низкой степенью наддува, а также в двухтактных дизелях без наддува.

Схема наддува с газовой связью (импульсная турбина)

В данной схеме наддува (рис. 31.б) продукты сгорания из двигателя по коротким патрубкам направляются в импульсную газовую турбину, где продолжается их расширение. Газовая турбина преобразует энергию газов в механическую работу и передает ее компрессору, находящемуся с ней на одном валу. При использовании схемы с чисто газовой связью мощность, полученная в турбине, на всех режимах работы равна мощности компрессора. Как и в предыдущей схеме, воздух, сжатый в компрессоре, через воздухоохладитель поступает в наддувочный ресивер двигателя.

Основными преимуществами рассмотренной схемы являются: простота конструкции, небольшие габариты турбокомпрессора, автоматическая газовая связь между нагрузкой двигателя, частотой вращения турбины и параметрами наддувочного воздуха. Недостатком схемы (по сравнению со схемой с механической связью) является ухудшение пусковых качеств дизелей, так как в начальный момент пуска дизеля турбина не работает.

Схема наддува с комбинированной связью

В рассматриваемой схеме наддува (рис. 31.в) турбоагрегат частично снимает мощность с коленчатого вала двигателя через мультипликатор, и частично – с вала импульсной газовой турбины. Причем на мощностях двигателя, близких к полным, работа турбокомпрессора обеспечивается только за счет мощности, вырабатываемой газовой турбиной, а на малых мощностях и в пусковых режимах бóльшая часть мощности отбирается от коленчатого вала двигателя. Данная схема обеспечивает хорошие пусковые качества дизеля и возможность форсирования двигателя по наддуву. Недостатками схемы являются усложнение дизеля за счет применения повышающей передачи – мультипликатора, и связанные с механической передачей дополнительные потери на привод компрессора на малых нагрузках двигателя.

Схема с изобарным наддувом

В этой схеме наддува (рис. 31.г) отработавшие газы из цилиндров двигателя выходят в выпускной коллектор, где выравнивается поле скоростей и давлений газов, а затем, практически при постоянном давлении, поступают в изобарную газовую турбину. Газовая турбина передает мощность компрессору, осуществляющему сжатие воздуха и находящемуся с ней на одном валу. Сжатый воздух через охладитель направляется в наддувочный ресивер двигателя.

При использовании чисто изобарного наддува на режимах малых нагрузок двигателя турбокомпрессор не обеспечивает потребный расход воздуха. На этих режимах работы двигателя дополнительно включаются в работу электроприводные компрессоры, специально установленные на дизеле.

Схема двухступенчатого комбинированного наддува

В рассматриваемой схеме наддува (рис. 31.д) продукты сгорания из цилиндров дизеля сначала направляются в импульсную газовую турбину, где происходит преобразование энергии газов в механическую работу вращения ротора турбины, а затем в выхлопной коллектор дизеля, где происходит выравнивание давления газов. Из выхлопного коллектора продукты сгорания поступают на рабочие лопатки изобарной газовой турбины, отдают ей свою энергию и выбрасываются в атмосферу. Мощность, вырабатываемая импульсной газовой турбиной, передается компрессору второй ступени сжатия, мощность изобарной турбины – компрессору первой ступени сжатия. Воздух из атмосферы поступает в компрессор первой ступени сжатия, охлаждается в промежуточном охладителе, досжимается в компрессоре второй ступени сжатия, и через воздухоохладитель поступает в наддувочный ресивер дизеля.

Такие схемы используются при высокой степени наддува с целью повышения показателей экономичности дизеля за счет более эффективного использования энергии газов а также более высоких КПД газовых турбин.

Схема наддува с использованием подпоршневых полостей

В малооборотных крейцкопфных дизелях в качестве приводного компрессора нередко используют подпоршневые полости цилиндров. В этом случае воздух, сжатый в основном турбокомпрессоре, приводимом в действие изобарной газовой турбиной, через охладитель поступает в герметичный картер двигателя к подпоршневым полостям (рис. 31.е). При движении поршня от ВМТ к НМТ воздух дополнительно сжимается и направляется в наддувочный ресивер дизеля.

При такой схеме наддува часть мощности двигателя тратится на сжатие воздуха в подпоршневых полостях.

В некоторых случаях могут использоваться и более «экзотические» схемы наддува. Например, в конструкции дизельного двигателя японской фирмы ххххххх для наддува могут использоваться часть рабочих цилиндров двигателя. При работе двигателя на частичных нагрузках часть цилиндров отключается от топливной системы, и они используются в роли компрессорных цилиндров.

Литература

Судовые энергетические установки. Дизельные и газотурбинные установки. Болдырев О.Н. [2003]

Как турбина влияет на мощность двигателя. Система турбонаддува и как она работает

Опубликовано Master в Март 7, 2019

Выбор правильного автомобиля как средства передвижения является важным решением. Здесь необходимо учитывать цену, потребление, комфорт, но есть и другие незаменимые факторы. Одним из таких факторов, который привлекает внимание к авто, является двигатель с турбонаддувом (турбина). Данная система помогает повысить мощность двигателя и предлагает экономию потребления топлива. Что такое турбонаддув, как турбина влияет мощность двигателя и общую производительность автомобиля – об этом расскажем в данном посте.

Содержание

Что такое турбонаддув

Тот, кто работает за рулем, даже если он не очень осведомлен в механике, имеет острое представление о том, как работает машина. Мощность, измеряемая в лошадиных силах, является способностью двигателя превращать топливо в движение и скорость. А это и есть тот значимый элемент, когда речь идет об эффективной, качественной и экономичной работе автомобиля.

На практике это выглядит так: каждая быстрая машина – мощная, но не всякая мощная – быстрая. Это связано с тем, что чем тяжелее транспортное средство, тем больше силы оно использует для движения.

Турбонаддув (система двигателя внутреннего сгорания на основе турбокомпрессора, или турбины) – это способ повысить мощность двигателя, используя компрессор для вытягивания и сжатия большего количества воздуха в камеру сгорания, увеличивая мощность сгорания топлива и, следовательно, увеличивая скорость передвижения авто, вне зависимости от его веса.

Как работает турбонаддув в машине

Двигатель с турбонаддувом состоит из двух частей – выпускного коллектора и турбокомпрессора. Первый отвечает за сбор газов из каждого цилиндра, которые будут поступать в выхлопную систему и выбрасываться в атмосферу.

Турбина собирает воздух, который, в свою очередь, приводит в движение винт, производя прохладный, чистый воздух. Этот воздух передается в компрессор, который уплотняет его и направляет в радиатор промежуточного охладителя, тем самым, охлаждая воздух. Таким образом, большее количество воздуха проходит через цилиндры и попадает в зону сгорания.

Схема работы турбонаддува

Двигатель работает на взрыве, а это значит, что ему нужен огонь, верно? То есть: тепло + топливо + кислород (газы, собираемые из выхлопных газов). Чем больше воздуха в системе, тем больше возможностей сжигать бензин и вырабатывать больше энергии. Прелесть в том, что он создает действенный круг, в котором тот самый газ, генерируемый двигателем (посредством взрывов), становится силой, приводящей в движение турбо систему.

Как турбина влияет на производительность автомобиля

После теоретической части следует объяснить, как турбина влияет на мощность двигателя и производительность автомобиля. Самым большим преимуществом турбины является экономный расход топлива. Но чтобы добиться такой экономии, водителю также необходимо внести свой вклад, научившись управлять своим транспортным средством безопасно, с наименьшим количеством тормозов и внезапным ускорением.

Помимо экономного расхода топлива, турбина помогает снизить выбросы загрязняющих веществ в окружающую среду. И, конечно же, с турбиной производительность авто будет на высоте (из-за нехватки кислорода транспортные средства теряют около 25% своей мощности). Двигатели с турбонаддувом повторно используют выхлопные газы.

Читать еще:  Почему горят салонные лампочки при выключении двигателя?

Турбонаддув сегодня признан самым действенным механизмом усиления мощности двигателя внутреннего сгорания без увеличения частоты оборота его коленчатого вала и рабочего объема цилиндров. Система с турбонаддувом используется на бензиновых и дизельных двигателях, однако её максимальная действенность доказана на дизельных двигателях за счет высокой степени сжатия в двигателе и относительно невысокой частоты оборота коленчатого вала. В бензиновом двигателе турбонаддув может вызвать эффект детонации по причине резкого увеличения частоты оборотов двигателя, а также высокой температуры отработанных газов и сильного нагрева турбины.

Установка турбонаддува как вариант повышения мощности двигателя

Существует несколько способов увеличения мощности двигателей легковых автомобилей. В этой статье поговорим об одном из них — о способе увеличения мощности, который получается за счёт использования для своей работы энергию отработавших газов, которая и используется для нагнетания дополнительного «рациона»и воздуха в цилиндры силового агрегата, то есть о турбонаддуве. Его принцип придумал и запатентовал в 1911 году Альфред Бюхи. А сам турбокомпрессор на практике автопромышленности и автоспорта начали использовать примерно в то же время.

Ну а в наши дни ни для кого не является секретом, что при применении турбины мощность атмосферного двигателя увеличивается серьёзно. Насколько увеличится, это уже зависит от конкретного автопроизводителя. Бывает, что от двух и более раз, если это спортивная модель, бывает от 25 до 50 процентов, если это просто мощная или слегка «оспортивленная» версия какой то модели. Или даже всего на 3-5 процентов, но этот вариант годится для увеличения тяги на низах и средних оборотах, что годится для любых тяжелых моделей – джипов, минивэнов и седанов и универсалов Е класса и более. Итак, есть куча преимуществ – это отлично, но есть и специфичные недостатки и особенности эксплуатации подобных агрегатов, о которых не все знают. С особенностей и начнём.

Преимущества и положительные стороны турбонаддува

Турбонаддув эволюционировал и модернизировался до сегодняшнего дня, на данный момент существует два принятых вида, не считая их производных и вариаций: компрессор и турбина. Итак, компрессор, он же механический нагнетатель, как видно из названия, для своей работы требует механическую силу от коленвала двигателя через цепной или ременной привод. Его главными преимуществами являются довольно эффективный наддув воздуха, который начинает работать с холостых оборотов, во впускном коллекторе постоянное обеспечение высокого давления и отсутствие такой неприятной особенности турбодвигателей как турбоямы.

Недостатки турбонаддува

Правда, вместе с тем у него есть и минусы. Компрессорные нагнетатели отбирают мощности у мотора при достижении им максимальных оборотах. Второй минус — увеличение потребления топлива с маслом, третий — снижение эффективности работы и КПД нагнетателя при высоких оборотах. Помимо этих «багов» компрессор уменьшает ресурс силового агрегата в целом, в отличии от «просто-турбо». А вот турбина данных недостатков лишена, которая использует «халявную» энергию выхлопных газов и обеспечивает довольно эффективную работу на высоких оборотах, не отбирая при этом мощности у двигателя. Но зато у турбины есть и свои недостатки, причём немало. Самым главный из них — это сложная конструкция, которая почти сравнима с авиационными двигателями, обусловленная наличием подшипников. Они должны выдерживать температуру до тысяча градусов по цельсию! И «переваривать» нагрузку до двухсот тысяч об/мин, плюс ко всему необходимость подключения смазочной системы для этих подшипников к аналогичной системе самого двигателя. Также с авиационной турбиной роднит автомобильную такая вещь, как инерционность — это некоторая задержка между нажатием на педаль «газа» и началом разгона, правда, она отнюдь не так заметно как в авиации, так как тут всё таки гораздо более компактный и лёгкий агрегат. И перейдём, пожалуй, к главнейшему минусу «турбика» к наличию турбоямы, это состояние турбонаддува, когда турбина абсолютно беспомощна в силу своей особенности для бензиновых моторов на низких оборотах, приблизительно до 1900-2000 об/мин, бесполезна. При наличии турбины так же увеличивается риск гидроудара, попадания воды в клапан управления турбокомпрессором. Это закончится в лучшем случае поломкой самого механизма турбонаддува, а в худшем – попаданием воды внутри цилиндров самого двигателя… и ясно дело, что со всеми вытекающими отсюда последствиями. Турбина, тоже снижает ресурс двигателя, хотя не так сильно как нагнетатель. Например, турбо низкого наддува практически не сокращает жизнь движка. Загадка в том, что хотя вес автомобиля остаётся по сравнению с «атмосферником» почти тем же (он увеличивается только за счёт веса самой турбины и дополнительных деталей к ней), и силовой агрегат тот же (то есть не увеличился его вес и количество деталей в ней).

Как правильно эксплуатировать авто с турбированным двигателем

Для того, чтобы турбина служила как можно дольше и беспроблемно работала – очень важно знать и соблюдать некоторые правила её эксплуатации. Итак, в первую очередь необходим её прогрев перед поездкой и после поездки давать её работать при холостых оборотах, с длительностью от одной минуты после небольших нагрузок, и до пяти минут после длительной езды, особенно на больших скоростях. Если не соблюдать это условие, то ресурс турбины сокращается до 1.5 раза, особенно у автомобилей Renault — она не выдержит и 100 тыс. км! Нужно учесть это, и до прогрева двигателя нужно стараться педалью акселератора не увлекаться. И если после поездки не особо хочется сидеть и ждать пока turbine остынет, то Вам понадобится установка турботаймера — это отличное и недорогое дополнение к любому автомобилю.

Очень рекомендуется периодичность сроков замены моторного масла сократить до каждых 7-10 тыс. км пробега и нужно применять исключительно качественное масло, которое рекомендовано самим заводом-производителем. Масло низкого качества имеет свойство от высокой температуры закоксовываться, естественно не сможет обеспечить полноценную смазку и охлаждение турбины. Нужно постараться приобрести масляные и воздушные фильтры доверенных брендов, и в данном случае абсолютно не следует экономить. Как и масло, воздушный фильтр также рекомендуется менять раньше положенного срока, иначе сильное засорение может привести во впускном тракте к повышенному разрежению и нарушить герметичность «впуска» турбины. Нужно постоянно держать под контролем систему охлаждения картера и маслопровод, так как течей быть не должно в котором. Как узнать разгерметизацию турбины – она сопровождается свистом, и как он появляется то сразу же на СТО пока не слишком поздно. Если устранять свист турбины и течи своевременно, то это поможет сохранить агрегат. Однако, в любом случае следует после каждой сотни тыс. км пробега провести полную диагностику, особенно при покупке б/у машины с турбомотором.

Ещё один важный момент, о котором могут часто забывать, если точнее многие даже и не подозревают: когда выбрасывают из выпускной системы турбо дизельных двигателей сажевой фильтр, чем довольно часто грешат водители, из-за того, что жалеют денег для покупки нового, то следует обязательно перепрошить мозги ЭБУ. А иначе, если резко увеличить обороты двигателя турбина запросто может выйти из строя. Если всех эти условия соблюдать, то с турбиной проблем не будет.

Способы повышения мощности дизелей. Турбонаддув

Из формулы для определения эффективной мощности дизеля:

можно определить способы повышения мощности. Таковыми являются:

1. Увеличение диаметра цилиндра D , целесообразно до определенного предела. С увеличением диаметра цилиндра увеличиваются инерционные силы, действующие на подвижные части дизеля, возрастают массогабаритные показатели двигателя. В настоящее время диаметр цилиндров наиболее мощных МОД достигает 105…106 см;

2. Увеличение хода поршня S (расширение области применения длинноходовых дизелей). Ход поршня дизельного двигателя тесно связан с диаметром цилиндра соотношением S D . Для различных классов дизелей существуют рекомендованные значения соотношения S D . Поэтому этот способ увеличения мощности непосредственно связан с предыдущим.

3. Увеличение числа цилиндров i – для этого способа увеличения мощности дизеля так же существует разумный предел. Увеличение числа цилиндров двигателя значительно усложняет его конструкцию, снижает показатели надежности. В современных дизелях число цилиндров достигает: в МОД –до 12, в СОД – до 18, в ВОД – до 50;

4. Расширение области применения двухтактных дизелей ( z =1), имеющих большие возможности по дальнейшему снижению удельных массогабаритных показателей, чем четырехтактные дизели;

5. Увеличение числа оборотов n (форсирование дизеля) – приводит к значительному снижению ресурсных показателей двигателя, особенно у ВОД (высокооборотный двигатель);

6. Повышение среднего эффективного давления pe за счет увеличения плотности воздуха, вводимого в цилиндр.

Последний способ является наиболее эффективным и получил наименование «наддува дизеля». Использование наддува дает возможность в несколько раз (4 ÷ 5) увеличить удельную мощность двигателя без изменения его основных размеров только за счет повышения давления наддувочного воздуха – pК , и надлежащего его охлаждения.

Наддув дизеля может осуществляться следующими способами: механическим, газотурбинным и комбинированным.

При механическом наддуве нагнетатель поршневого, ротативного или центробежного типа приводится в действие от коленчатого вала двигателя. Применение механического наддува влечет за собой потерю мощности двигателя на привод компрессора, которая может достигать 7 ÷ 10 % от эффективной мощности двигателя. В чистом виде механический наддув в современных дизелях, как правило, не применяется.

Читать еще:  Что меняют вместе с маслом двигателя?

В настоящее время в двух- и четырехтактных дизелях применяют газотурбинный наддув. Он может осуществляться следующими способами:

— турбонаддув с изобарной турбиной : при этом способе наддува выхлопные газы собираются в выхлопном коллекторе. В коллекторе происходит выравнивание давления газов и поля скоростей. Из выхлопного коллектора при постоянном давлении газы подаются на рабочие лопатки газовой турбины, приводящей во вращение компрессор;

— турбонаддув с импульсной турбиной: при таком способе наддува используется кинетическая энергия газов в виде импульсов в периоды свободного выпуска. Соединительные трубы между выпускными окнами или клапанами и газовыми турбинами делаются как можно короче с целью уменьшения дросселирования газов в выхлопном патрубке и максимального сохранения их кинетической и тепловой энергии.

Рабочий цикл дизельного двигателя без наддува состоит из следующих термодинамических процессов (рис. 27):

Рабочий цикл дизеля с изобарным наддувом состоит из следующих термодинамических процессов (рис. 28):

  • 1− 2 – адиабатное сжатие воздуха в рабочем цилиндре двигателя;
  • 2 − 3 – изохорный подвод тепла Q1′ в цилиндре при сжигании части топлива в конце такта сжатия;
  • 3 − 4 – изобарный подвод тепла Q 1′′ при сжигании части топлива в начале такта расширения;
  • 4 − 5 – адиабатное расширение газов в цилиндре двигателя;
  • 5 −1 – изохорный отвод тепла в газовыхлопной коллектор;
  • 9 − 6 – изобарный подвод теплоты Q2 к рабочему телу (выравнивание давлений газов в коллекторе перед подачей их в изобарную турбину);
  • 6 − 7 – адиабатное расширение газов в газовой турбине;
  • 7 − 8 – изобарный отвод теплоты Q2′ к холодному источнику (выброс выхлопных газов в атмосферу;
  • 8 − 9 – адиабатное сжатие воздуха в турбокомпрессоре;
  • 9 −1 – изобарный отвод теплоты Q2′′ в охладителе надувочного воздуха

Площадь фигуры a − 6 − 7 − b на диаграмме численно равна работе, совершаемой при расширении газов в газовой турбине. Площадь фигуры a − 9 − 8 − b численно равна работе, затраченной на сжатие воздуха в компрессоре. Площадь, ограниченная фигурой 6 − 7 − 8 − 9 численно равна полезной работе, полученной при использовании турбокомпрессора (приращение полезной работы цикла с изобарной турбиной).

Термодинамический цикл дизеля с импульсным наддувом, в отличие от изобарного, имеет следующие особенности (рис. 29):

  • 5 − 6 – продукты сгорания, совершив работу расширения в цилиндре двигателя, без потерь поступают в газовую турбину, где продолжается их дальнейшее расширение;
  • 6 − 7 – изобарный отвод теплоты Q′2 от продуктов сгорания к холодному источнику (выброс газов в атмосферу);
  • 7 − 8 – адиабатное сжатие воздуха в турбокомпрессоре;
  • 8 −1 – изобарный отвод теплоты Q′′2 от сжатого воздуха в воздухоохладителе.

Площадь диаграммы a − 5 − 6 − b численно равна работе, совершаемой газами в газовой турбине; площадь диаграммы c − 8 − 7 − b – работе сжатия компрессора. Площадь фигуры 1 − 5 − 6 − 7 − 8 численно равна полезной работе турбокомпрессора с импульсной турбиной (приращение полезной работы цикла с импульсной турбиной).

Применение газотурбинного наддува дизельного двигателя позволяет:

  • — наиболее полно использовать тепловую и кинетическую энергию продуктов сгорания, покидающих цилиндры двигателя (т.е уменьшить потери с уходящими газами QГ – самую большую составляющую тепловых потерь дизельного двигателя);
  • — без дополнительных затрат энергии осуществить сжатие воздуха, подаваемого в цилиндры двигателя, что в свою очередь повышает среднее эффективное давление и, соответственно, мощность дизеля;
  • — за счет использования перечисленных мероприятий повысить общий КПД дизельной энергетической установки.

Основные компоновочные схемы дизельных двигателей с наддувом

Все компоновочные схемы судовых дизельных установок с наддувом можно разделить на три большие группы:

  • схемы наддува с механической связью между поршневым двигателем и наддувочным агрегатом (схемы с подключенным турбокомпрессором);
  • схемы наддува с газовой связью (со свободным турбокомпрессором);
  • комбинированые схемы наддува , включающие сочетания механической и газовой связи, либо использование различных способов газотурбинного наддува (изобарный и импульсный наддувы).

Ниже рассмотрены наиболее часто применяемые схемы осуществления механического, газового и комбинированного наддува дизелей, их особенности, преимущества и недостатки.

Схема наддува с механической связью

В схеме наддува с механической связью (рис. 31.а) компрессор приводится в действие непосредственно от коленчатого вала дизеля через повышающую механическую передачу – мультипликатор. Сжатый в компрессоре воздух поступает в воздухоохладитель, где от него отводится часть теплоты (повышается плотность заряда воздуха), и затем направляется в наддувочный ресивер двигателя.

Основным недостатком схемы является тот факт, что на привод компрессора затрачивается значительная часть мощности (от 7 до 10 %), полученной в рабочих цилиндрах двигателя (потери N К ). Это в свою очередь приводит к некоторому снижению мощности двигателя и его экономичности. Такая схема обычно применяется в дизелях с низкой степенью наддува, а также в двухтактных дизелях без наддува.

Схема наддува с газовой связью (импульсная турбина)

В данной схеме наддува (рис. 31.б) продукты сгорания из двигателя по коротким патрубкам направляются в импульсную газовую турбину, где продолжается их расширение. Газовая турбина преобразует энергию газов в механическую работу и передает ее компрессору, находящемуся с ней на одном валу. При использовании схемы с чисто газовой связью мощность, полученная в турбине, на всех режимах работы равна мощности компрессора. Как и в предыдущей схеме, воздух, сжатый в компрессоре, через воздухоохладитель поступает в наддувочный ресивер двигателя.

Основными преимуществами рассмотренной схемы являются: простота конструкции, небольшие габариты турбокомпрессора, автоматическая газовая связь между нагрузкой двигателя, частотой вращения турбины и параметрами наддувочного воздуха. Недостатком схемы (по сравнению со схемой с механической связью) является ухудшение пусковых качеств дизелей, так как в начальный момент пуска дизеля турбина не работает.

Схема наддува с комбинированной связью

В рассматриваемой схеме наддува (рис. 31.в) турбоагрегат частично снимает мощность с коленчатого вала двигателя через мультипликатор, и частично – с вала импульсной газовой турбины. Причем на мощностях двигателя, близких к полным, работа турбокомпрессора обеспечивается только за счет мощности, вырабатываемой газовой турбиной, а на малых мощностях и в пусковых режимах бóльшая часть мощности отбирается от коленчатого вала двигателя. Данная схема обеспечивает хорошие пусковые качества дизеля и возможность форсирования двигателя по наддуву. Недостатками схемы являются усложнение дизеля за счет применения повышающей передачи – мультипликатора, и связанные с механической передачей дополнительные потери на привод компрессора на малых нагрузках двигателя.

Схема с изобарным наддувом

В этой схеме наддува (рис. 31.г) отработавшие газы из цилиндров двигателя выходят в выпускной коллектор, где выравнивается поле скоростей и давлений газов, а затем, практически при постоянном давлении, поступают в изобарную газовую турбину. Газовая турбина передает мощность компрессору, осуществляющему сжатие воздуха и находящемуся с ней на одном валу. Сжатый воздух через охладитель направляется в наддувочный ресивер двигателя.

При использовании чисто изобарного наддува на режимах малых нагрузок двигателя турбокомпрессор не обеспечивает потребный расход воздуха. На этих режимах работы двигателя дополнительно включаются в работу электроприводные компрессоры, специально установленные на дизеле.

Схема двухступенчатого комбинированного наддува

В рассматриваемой схеме наддува (рис. 31.д) продукты сгорания из цилиндров дизеля сначала направляются в импульсную газовую турбину, где происходит преобразование энергии газов в механическую работу вращения ротора турбины, а затем в выхлопной коллектор дизеля, где происходит выравнивание давления газов. Из выхлопного коллектора продукты сгорания поступают на рабочие лопатки изобарной газовой турбины, отдают ей свою энергию и выбрасываются в атмосферу. Мощность, вырабатываемая импульсной газовой турбиной, передается компрессору второй ступени сжатия, мощность изобарной турбины – компрессору первой ступени сжатия. Воздух из атмосферы поступает в компрессор первой ступени сжатия, охлаждается в промежуточном охладителе, досжимается в компрессоре второй ступени сжатия, и через воздухоохладитель поступает в наддувочный ресивер дизеля.

Такие схемы используются при высокой степени наддува с целью повышения показателей экономичности дизеля за счет более эффективного использования энергии газов а также более высоких КПД газовых турбин.

Схема наддува с использованием подпоршневых полостей

В малооборотных крейцкопфных дизелях в качестве приводного компрессора нередко используют подпоршневые полости цилиндров. В этом случае воздух, сжатый в основном турбокомпрессоре, приводимом в действие изобарной газовой турбиной, через охладитель поступает в герметичный картер двигателя к подпоршневым полостям (рис. 31.е). При движении поршня от ВМТ к НМТ воздух дополнительно сжимается и направляется в наддувочный ресивер дизеля.

При такой схеме наддува часть мощности двигателя тратится на сжатие воздуха в подпоршневых полостях.

В некоторых случаях могут использоваться и более «экзотические» схемы наддува. Например, в конструкции дизельного двигателя японской фирмы ххххххх для наддува могут использоваться часть рабочих цилиндров двигателя. При работе двигателя на частичных нагрузках часть цилиндров отключается от топливной системы, и они используются в роли компрессорных цилиндров.

Литература

Судовые энергетические установки. Дизельные и газотурбинные установки. Болдырев О.Н. [2003]

Ссылка на основную публикацию
Adblock
detector